检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:周治威 刘为凯 钟小颖 ZHOU Zhi-wei;LIU Wei-kai;ZHONG Xiao-ying(School of Mathematic and Physics,Wuhan Institute of Technology,Wuhan Hubei 430205,China)
出 处:《控制理论与应用》2022年第10期1961-1968,共8页Control Theory & Applications
基 金:湖北省教育厅科学技术研究计划重点项目(D20131503)资助。
摘 要:针对联邦学习训练过程中通信资源有限的问题,本文提出了两种联邦学习算法:自适应量化权重算法和权重复用控制算法,前者对权重的位数进行压缩,减少通信过程中传输的比特数,算法在迭代过程中,自适应调整量化因子,不断减少量化误差;后者能阻止不必要的更新上传,从而减少上传的比特数.基于标准检测数据集Mnist和Cifar10,在CNN和MLP网络模型上做了仿真模拟,实验结果表明,与典型的联邦平均算法相比,提出的算法降低了75%以上的通信成本.Aiming at the problem of limited communication resources in federated learning and training,two federal learning algorithms are proposed in this paper,the adaptive quantification weighting algorithm and the weighting multiplexing control algorithm,the former compression the median of weight,reduces the number of bits in the transmission in the communication process in iterative process,can adjusts adaptive quantization factor,and constantly reduces the quantization error.The latter prevents unnecessary updates from being uploaded,thereby reducing the number of uploaded bits.Based on the standard detection dataset Mnist and Cifar10,the simulation is carried out on CNN and MLP network models.The experimental results show that the proposed algorithm reduces the communication cost by more than 75%compared with the typical federated average algorithm.
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33