检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨小蒙 张涛[3] 庄建军 唐震 YANG Xiaomeng;ZHANG Tao;ZHUANG Jianjun;TANG Zhen(School of Electronic and Information Engineering,Nanjing University of Information Science and Technology,Nanjing 210044,China;School of Computer and Software,Nanjing University of Information Science and Technology,Nanjing 210044,China;The 63rd Research Institute,National University of Defense Technology,Nanjing 210007,China)
机构地区:[1]南京信息工程大学电子与信息工程学院,南京210044 [2]南京信息工程大学计算机与软件学院,南京210044 [3]国防科技大学第六十三研究所,南京210007
出 处:《电讯技术》2023年第2期151-157,共7页Telecommunication Engineering
基 金:国家自然科学基金资助项目(61801496,61801497,62171228);国家重点研发计划项目(2021YFE0105500);军委科技委基础加强计划领域基金项目(2019-JCJQ-JJ-221)。
摘 要:为在低复杂度约束条件下提升电磁信号调制识别的性能,提出了一种基于稀疏深度神经网络(Sparse Deep Neural Network,SDNN)的电磁信号调制识别方法。首先,通过提取电磁信号同相和正交两路数据绘制出信号的星座图,作为信号的浅层特征表达;然后,基于星座图中各信号点密度大小对星座图进行上色,增强星座图中信号特征;最后,通过SDNN对增强后的星座图进行识别分类。实验结果表明,SDNN模型选取合适的剪枝率后,能够有效降低模型存储规模和计算量,其中模型参数压缩了72%,浮点运算量压缩了45%,与原模型97%的综合识别率相比,稀疏化处理后模型的综合识别率为96.8%,在小幅度识别精度损失范围内大幅降低了模型复杂度。In order to improve the performance of electromagnetic signal modulation recognition under low complexity constraints,an electromagnetic signal modulation recognition method based on sparse depth neural network(SDNN)is proposed.First,by extracting the in-phase/quadrature data of the electromagnetic signal,the constellation of the signal is drawn as the shallow feature expression of the signal.Then,the constellation is colored based on the density of each signal point in the constellation to enhance the signal characteristics in the constellation.Finally,the enhanced constellation is recognized and classified by SDNN.The experimental results show that the SDNN model can effectively reduce the storage scale and computation of the model after selecting the appropriate pruning rate.And the model parameters are compressed by 72% and the floating-point operation is compressed by 45%.Compared with the 97% comprehensive recognition rate of the original model,the comprehensive recognition rate of the sparse model is 96.8%,which is within the range of small loss of recognition accuracy.The complexity of the model is greatly reduced.
关 键 词:电磁信号 调制识别 星座图 稀疏深度神经网络(SDNN)
分 类 号:TN911.7[电子电信—通信与信息系统] TN971[电子电信—信息与通信工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.171