机构地区:[1]Department of Pediatrics,the Second School of Medicine,the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University,Wenzhou,Zhejiang Province,China [2]Second Clinical Medical College,Wenzhou Medical University,Wenzhou,Zhejiang Province,China [3]Key Laboratory of Children Genitourinary Diseases of Wenzhou,the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University,Wenzhou,Zhejiang Province,China [4]Key Laboratory of Perinatal Medicine of Wenzhou,the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University,Wenzhou,Zhejiang Province,China [5]Basic Medical Research Center,the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University,Wenzhou,Zhejiang Province,China
出 处:《Neural Regeneration Research》2023年第10期2229-2236,共8页中国神经再生研究(英文版)
基 金:supported by the National Natural Science Foundation of China,No.82271747(to ZLL);Medical and Health Science and Technology Program of Zhejiang Province of China,No.2023RC048(to WL)。
摘 要:Hypoxic-ischemic encephalopathy,which predisposes to neonatal death and neurological sequelae,has a high morbidity,but there is still a lack of effective prevention and treatment in clinical practice.To better understand the pathophysiological mechanism underlying hypoxic-ischemic encephalopathy,in this study we compared hypoxic-ischemic reperfusion brain injury and simple hypoxic-ischemic brain injury in neonatal rats.First,based on the conventional RiceVannucci model of hypoxic-ischemic encephalopathy,we established a rat model of hypoxic-ischemic reperfusion brain injury by creating a common carotid artery muscle bridge.Then we performed tandem mass tag-based proteomic analysis to identify differentially expressed proteins between the hypoxic-ischemic reperfusion brain injury model and the conventional Rice-Vannucci model and found that the majority were mitochondrial proteins.We also performed transmission electron microscopy and found typical characteristics of ferroptosis,including mitochondrial shrinkage,ruptured mitochondrial membranes,and reduced or absent mitochondrial cristae.Further,both rat models showed high levels of glial fibrillary acidic protein and low levels of myelin basic protein,which are biological indicators of hypoxic-ischemic brain injury and indicate similar degrees of damage.Finally,we found that ferroptosis-related Ferritin(Fth1)and glutathione peroxidase 4 were expressed at higher levels in the brain tissue of rats with hypoxic-ischemic reperfusion brain injury than in rats with simple hypoxic-ischemic brain injury.Based on these results,it appears that the rat model of hypoxic-ischemic reperfusion brain injury is more closely related to the pathophysiology of clinical reperfusion.Reperfusion not only aggravates hypoxic-ischemic brain injury but also activates the anti-ferroptosis system.
关 键 词:ferroptosis hypoxic-ischemic brain injury hypoxic-ischemic encephalopathy hypoxic-ischemic reperfusion brain injury mitochondria model proteomic analysis REPERFUSION Rice-Vannucci transmission electron microscopy
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...