检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李可欣 郭健[1] 王宇君 李宗明 缪坤 陈辉 LI Kexin;GUO Jian;WANG Yujun;LI Zongming;MIU Kun;CHEN Hui(Information Engineering University,Zhengzhou 450001,China;31682 Troops,Lanzhou 730000,China;Army Special Operations College,Guilin 541000,China;31438 Troops,Shenyang 110031,China)
机构地区:[1]信息工程大学,郑州450001 [2]31682部队,兰州730000 [3]陆军特种作战学院,桂林541000 [4]31438部队,沈阳110031
出 处:《地球信息科学学报》2023年第1期131-141,共11页Journal of Geo-information Science
摘 要:提升海上态势感知能力是构建智慧海洋的重要环节。针对目前海上目标研究单源传感器存在感知盲区,多源传感器数据关联易受杂波干扰、在密集区表现不佳等问题,本文基于合成孔径雷达(SAR)和船舶自动识别系统(AIS)数据,提出一种抗干扰性强的角度最近邻数据关联方法,充分利用SAR与AIS船舶目标的空间角度关系,提高船舶目标在密集区域点迹关联的准确性。首先,对AIS数据进行时空滤波,实现数据粗关联,构建关联分析的数据候选集;然后,从时空数据的空间关系角度出发,在灰狼优化和匈牙利算法的启发下,利用点迹对特征向量矩阵进行运算,实现对多源空间数据的优化关联;最后结合数据几何关系对结果进行置信度评估。本文选取5幅SAR影像与AIS数据进行实验,并基于SAR影像数据及船舶轨迹点分布密度设计仿真实验,结果表明,本文所提出的角度最近邻数据关联方法,在密集分布情况下,关联精度为传统NN、GNN算法的3.62和4.61倍,运行时间为1.69 s,相较于NN算法仅增长1.36 s,仅占GNN运行时间的0.49%,在运行时间增长不大的情况下具有更强的抗干扰能力,在密集区域仍能取得较好的关联效果。Improving maritime situation awareness is important for building an intelligent ocean.In order to solve the problems of perception blind area of single source sensor and poor performance of multi-source sensor data association in dense area,this paper proposes an angle nearest neighbor data association method with strong anti-interference based on Synthetic Aperture Radar(SAR)and Automatic Identification System(AIS)data.The spatial angle relationship between SAR and AIS is utilized to improve the accuracy of point trace correlation of ship targets in dense areas.Firstly,the spatiotemporal filtering is performed on AIS data to realize data coarse association,and a data candidate set for association analysis is constructed.Then,from the perspective of spatial relationship of spatiotemporal data,inspired by gray wolf optimization and Hungarian algorithm,the eigenvector matrix of point trace pair is operated to achieve the optimal association of multi-source spatial data.Finally,the confidence of the results is evaluated by combining the geometric relationship of the data.In this paper,five SAR images and AIS data are selected for experiments,and simulation experiments are designed based on SAR image data and the distribution density of ship trajectory points.The results show that,in the case of dense distribution,the correlation accuracy of the angular nearest neighbor data association method proposed in this paper is 3.62 and 4.61 times that of the traditional nearest neighbor algorithm and global nearest neighbor algorithm,respectively.The running time of our proposed method is 1.69 s,which is only 1.36 s longer than nearest neighbor algorithm and only accounts for 0.49 percent of global nearest neighbor algorithm’s running time.By comparison,our proposed method has stronger anti-interference ability and can achieve good correlation accuracy in dense areas with little increase in the running time.
关 键 词:海上目标 数据关联 角度最近邻 灰狼优化 匈牙利算法 空间数据 AIS SAR
分 类 号:TN957.52[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15