检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:赵玉清[1] 邵剑峰 ZHAO Yuqing;SHAO Jianfeng(North China University of Technology,Beijing 100144,China)
机构地区:[1]北方工业大学,北京100144
出 处:《建筑节能(中英文)》2023年第1期115-118,144,共5页Building Energy Efficiency
摘 要:本研究针对水源热泵机组常见的6种热力故障,尝试使用SOFM神经网络进行故障诊断。利用水源热泵机组试验台人为制造制冷剂充注量过多、制冷剂泄漏、膨胀阀开度过大与过小、冷却水管路阻塞、系统含不凝性气体共计6种热力故障,记录机组带故障运行时的运行参数,将收集到的参数进行归纳整理,提取出部分特征值制作成数据集。将数据集划分为训练集合与测试集合,前者用于神经网络的训练,后者用于验证神经网络故障的诊断效果。结果表明,SOFM神经网络对于本次实验人为制造出的6种水源热泵热力故障具有较高的诊断正确率,网络迭代500次,用时2.7 s,在有效诊断的同时具有较快的响应速度。SOFM neural network is used to diagnose six common thermal faults of water source heat pump units. Using water source heat pump test-bed man-made refrigerants filling quantity is too much, refrigerant leakage, expansion valve opening through big and small, cooling water pipe jam, system contains no non-condensable gas for a total of six kinds of thermal failure, recording unit operation parameters of fault runtime, organizing the collected parameters, and to extract the feature of values into a data set. The data set is divided into training set and test set. The former is used to train the neural network, and the latter is used to verify the diagnosis effect of neural network faults. The results show that SOFM neural network has a high diagnostic accuracy for six kinds of thermal faults of water source heat pump manufactured artificially in this experiment. The network iteration is 500 times and the time is 2.7 s. It has a fast response speed and effective diagnosis.
关 键 词:热力故障 神经网络 水源热泵 故障诊断 SOFM
分 类 号:TU831.4[建筑科学—供热、供燃气、通风及空调工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.63