检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:迟晓帆 杨环 西永明[2] 徐同帅 段文玉 洪承超 CHI Xiaofan;YANG Huan;XI Yongming;XU Tongshuai;DUAN Wenyu;HONG Chengchao(College of Computer Science and Technology,Qingdao University,Qingdao Shandong 266071,China;Department of Spine Surgery,Laoshan Hospital,The Affiliated Hospital of Qingdao University,Qingdao Shandong 266000,China)
机构地区:[1]青岛大学计算机科学技术学院,山东青岛266071 [2]青岛大学附属医院崂山院区脊柱外科,山东青岛266000
出 处:《计算机应用》2022年第S02期249-258,共10页journal of Computer Applications
基 金:山东省泰山学者项目(ts20190985)。
摘 要:脊柱X光影像分割为脊柱配准、参数测量与疾病分型奠定了基础,提出了一种基于深度学习的多方位脊柱X光影像自动分割方法。该方法级联粗分割网络与细分割网络,采用Inception模块进行特征提取,通过多尺度跳跃连接结构实现二者互连,构建循环残差路径解决跳连处特征融合时易造成信息丢失现象,同时细分割网络瓶颈处引入并行空间和通道挤压激励模块(SCSE)提高网络对脊柱部位的关注。实验结果表明,该方法在冠状位和左、右Bending位X光影像数据集中平均交并比(IoU)为92.89%、94.10%和93.74%,其三方位脊柱分割效果优于全卷积网络(FCN)、U-Net、SegNet等模型。Spine X-ray image segmentation lays the foundation for spine registration,parameter measurement and disease classification.An automatic multi-directional spine X-ray image segmentation method based on deep learning was proposed.In this method,the rough segmentation network and the fine segmentation network were cascaded,the Inception block was used for feature extraction,the interconnection between them was realized through the multi-scale skip connection structure,the recurrent residual path was built to solve the information loss caused by the feature fusion at the skip connection,and the concurrent Spatial and Channel Squeeze&Excitation module(SCSE)was introduced at the bottleneck of the fine segmentation network to improve the network’s attention to the spine.Experimental results show that the average Intersection over Union(IoU)values of this method in coronal,left bending and right bending X-ray image data sets are 92.89%,94.10%and 93.74%,and its three-directional spine segmentation effect is better than that of Fully Convolutional Network(FCN),U-Net,SegNet and other models.
关 键 词:脊柱X光影像 深度学习 特征提取 特征融合 注意力模块
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222