雇主算法权力:法理构造、内涵特征与规制路径  被引量:13

Employer’s Algorithmic Power:The Jurisprudential Structure,Characteristics and Regulation

在线阅读下载全文

作  者:田思路 李帛霖 TIAN Silu;LI Bolin

机构地区:[1]华东政法大学经济法学院 [2]日本早稻田大学

出  处:《社会科学》2023年第1期169-180,共12页Journal of Social Sciences

基  金:国家留学基金委“国家建设高水平大学公派研究生项目”(项目编号:[2022]87号);华东政法大学优秀博士学位论文培育项目(项目编号:2022-1-009)的阶段性成果。

摘  要:雇主算法权力是指具有雇主全部或部分权力的主体,在劳动过程中依靠算法劳动规则对劳动者权益产生影响的能力。雇主算法权力作为一种复合权力,其所指向的算法劳动规则的隐蔽性、分散性和动态性特征,决定了雇主算法权力在适用对象、权力内容和适用方式层面区别于传统的劳动管理权与规章制度,进而对劳动关系平衡带来特殊的影响。其中,劳动的技术异化与劳动者“去人格化”是核心影响。为此,必须从保护劳动者人格尊严原则出发,强化集体劳动权对雇主算法权力的制衡功能,对算法劳动规则“去伪存真”,从而建立起以算法备案、算法审计、算法监督为核心的算法劳动规则纠偏机制。The employer’s algorithmic power refers to the ability of a subject with full or part of the employer’s power to influence the rights and interests of worker in the labour process by relying on algorithmic labour rules.As a composite power,the employer’s algorithmic power is characterized by the concealed,decentralized and dynamic nature of the algorithmic labour rules that it points to.This distinguishes it from traditional labour management rights and regulations in terms of the objects,content and manner of application,and ensures the employer’s algorithmic power a special impact on workers and the balance of labour relations.Amongst these factors,the technical alienation of labour and the“depersonalization”of the worker exercise the central effects.For this reason,it is necessary to strengthen the checks and balances of collective labour rights on the employer’s algorithmic power from the perspective of protecting the human dignity of workers,and to apply the policy of“removing the falsehoods and keeping the truth”to algorithmic labour rules,so as to establish a corrective mechanism for algorithmic labour rules with algorithmic filing,algorithmic audit and algorithmic supervision as the core.

关 键 词:算法权力 算法劳动规则 劳动者人格尊严 集体劳动权 算法纠偏机制 

分 类 号:D922.5[政治法律—民商法学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象