基于Bi-LSTM的电动直臂车磷酸铁锂电池SOC估计  被引量:3

Estimationof SOC for electric telescopic boom aerial work platform based on Bi-LSTM

在线阅读下载全文

作  者:张艺迪 孙晖[1] ZHANG Yi-di;SUN Hui(Zhejiang University,College of Electrical Engineering,Hangzhou 310027,China)

机构地区:[1]浙江大学电气工程学院,浙江杭州310027

出  处:《能源工程》2023年第1期37-42,共6页Energy Engineering

摘  要:针对电动直臂车的特殊工况,提出了一种基于双向长短期记忆神经网络(Bi-LSTM)的电动直臂车荷电状态(SOC)估计模型和方法。该方法将电池的工作电压、电流及表面温度作为输入,采用双向传递的两层LSTM神经网络进行训练,再将两次得到的结果进行拼接作为最终输出。实验结果表明,该方法比传统前馈(BP)神经网络和单向LSTM神经网络具有更好的估计性能,并且可以精确估计不同环境温度下的电池及整车SOC。According to the special operating condition of electric telescopic boom aerial work platform,a novel state of charge(SOC)prediction model is proposed based on bi-directional long short-term memory(Bi-LSTM)neural network.Voltage,current and surface temperature of battery are considered as inputs,and the forward LSTM layer and the backward LSTM layer can be used to provide complete timing information for the output.Experimental results show that the proposed model improves estimated performance compared with traditional back propagation(BP)neural network model and one-directional LSTM model.Furthermore,the proposed model can accurately estimate the SOC of battery and vehicle under different ambient temperatures.

关 键 词:SOC估计 磷酸铁锂电池 Bi-LSTM神经网络 电动直臂车 环境温度 

分 类 号:TM911[电气工程—电力电子与电力传动]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象