检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:沈学利 韩倩雯 SHEN Xueli;HAN Qianwen(College of Software,Liaoning Technical University,Huludao 125105,Liaoning,China)
机构地区:[1]辽宁工程技术大学软件学院,辽宁葫芦岛125105
出 处:《计算机工程》2023年第3期80-86,94,共8页Computer Engineering
基 金:辽宁省教育厅科学技术项目(LJ2020FWL001)。
摘 要:点击率预测是广告投放的重要手段之一,通过预测广告点击率对用户进行效推荐,能够提高广告收益。在点击率预测任务中,场感知点击率预测模型由于考虑了场信息,表现出一定优越性,但在进行特征交互时会产生大量冗余信息,导致预测准确率较低。提出一种场感知注意嵌入神经网络(FAENN)模型,通过自注意力机制对嵌入层的输入向量进行权重分配,以较好地区分场感知嵌入特征的重要程度,加快模型训练速度。同时使用低阶特征交互层关注特征的一阶显性信息和二阶交互特征信息,并将有效特征输出到高阶交互层,利用高阶特征交互层将学习到的相互作用向量与深度神经网络相结合,捕捉更高阶的特征交互作用,以提高预测准确率。实验结果表明,FAENN模型相比于FM、FFM、AFM等模型有较高的预测准确率。Click-Through Rate(CTR)prediction is one of the most important tools for ad placement.Predicting the CTR of an ad and making recommendations to users can increase ad revenue.Field-aware click-through rate prediction models are superior to other click-through rate prediction models because they consider the field information;however,they generate a large amount of redundant information during feature interaction,which results in a low prediction accuracy.A Field-aware Attention Embedding Neural Network(FAENN)model is herein proposed.This model uses a Self-Attentive Mechanism(SAM)to distribute weights to the input vectors of the embedding layer.This helps to clearly identify the importance of the field-aware embedded features,speeding up the training process.The lower-order feature interaction layer focuses on the explicit first-order information of the features and the second-order interaction feature information and outputs the effective features to the higher-order interaction layer.The higher-order feature interaction layer combines the learned interaction vectors with the deep neural network to capture higher-order feature interactions to improve prediction accuracy.The experimental results show that the FAENN model has a higher prediction accuracy than the FM,FFM,and AFM models.
关 键 词:点击率预测 表示学习 嵌入技术 自注意力机制 特征交互
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.198