基于无迹Kalman滤波的车辆速度和质心侧偏角的估计  被引量:2

Estimation of vehicle velocities and side-slip angles based on the unscented Kalman filter

在线阅读下载全文

作  者:刘兆勇[1,2] 刘武东 邵卫澍 谭小强 吴光强 LIU Zhaoyong;LIU Wudong;SHAO Weishu;TAN Xiaoqiang;WU Guangqiang(School of Automotive Engineering,Tongji University,Shanghai 200240,China;Gelubo Technology Co.,Ltd.,Nantong 226000,China)

机构地区:[1]同济大学汽车学院,上海200240 [2]格陆博科技有限公司,南通226000

出  处:《汽车安全与节能学报》2023年第1期31-37,共7页Journal of Automotive Safety and Energy

基  金:上海汽车工业科技发展基金会项目(2007)。

摘  要:为满足车辆主动安全控制功能需求,需提升车辆在强非线性特性下的状态观测精度,提出一种基于无迹Kalman滤波(UKF)的模块化车辆横纵向速度状态观测器结构。该结构利用车载传感器信息,结合UKF观测纵向和横向速度,根据质心侧偏角的定义,计算车辆质心侧偏角。在干燥路面上,进行数字仿真以及实车实验。结果表明:在强非线性状态下,基于UKF的车辆质心侧偏角估计的仿真结果的均方根误差(RMSE)为0.425°,实车实验的RMSE为0.001°,而使用扩展Kalman滤波(EKF)估计的仿真结果 RMSE为0.968°,实车实验的RMSE为0.009°。因此,UKF可以抑制车辆行驶中的干扰对观测的影响,使本观测器结构有较高的观测精度,可满足工程需要。A modular state observer structure of vehicle lateral and longitudinal velocity based on the Unscented Kalman Filter(UKF) was proposed to meet the requirements of vehicle active safety control function and to improve the accuracy of vehicle state observation under strong nonlinear characteristics. The structure used the information of vehicle sensors combined with UKF to observe the longitudinal and lateral velocity, and calculated the vehicle side-slip angle according to the definition of side-slip angle. Numerical simulations and real vehicle experiments were carried out on dry road surfaces. The results show that in the strong nonlinear state, the root mean square error(RMSE) of the simulation results of the UKF-based vehicle side-slip angle estimation is 0.425°, the RMSE of the real vehicle experiment is 0.001°, while the RMSE of the simulation results using the Extended Kalman Filter(EKF) estimation is 0.968°, and the RMSE of the real vehicle experiment is 0.009°. Therefore, the UKF can suppress the influence of vehicle driving interference on observation, so that the observer structure has high observation accuracy and can meet the needs of engineering.

关 键 词:车辆主动安全控制 车辆速度 模块化状态观测器 质心侧偏角 无迹Kalman滤波(UKF) 

分 类 号:U461.6[机械工程—车辆工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象