检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:熊才权[1] 古小惠 吴歆韵 Xiong Caiquan;Gu Xiaohui;Wu Xinyun(School of Computer Science,Hubei University of Technology,Wuhan 430068,China)
出 处:《计算机应用研究》2023年第3期738-742,共5页Application Research of Computers
基 金:国家自然科学基金资助项目(61902116);湖北省科技计划资助项目(2021BLB171);湖北工业大学绿色工业科技引领计划资助项目(CPYF2017008)。
摘 要:K-shell分解法能快速识别复杂网络中的关键节点,但是无法辨别同壳层内节点重要性的差异,并且低估了处于网络边缘位置的高度值节点的重要性。针对这两个问题,提出一种基于K-shell位置和两阶邻居的节点重要性评估方法。该方法根据K-shell分解过程中节点移除的顺序细化节点的全局位置信息,然后综合考虑节点的局部拓扑结构信息和全局位置信息,利用两步长内邻居节点的K-shell位置信息度量节点的重要性。在八个真实网络上用传染病模型进行仿真实验,结果表明,所提方法与其他五种相关方法相比能更准确有效地评估并区分节点的重要性。K-shell method can quickly identify influential nodes in complex networks.However,it is hard to distinguish the differences in the importance of these nodes.In addition,it underestimates the importance of high degree nodes at the edge of the network.Aiming at these two shortcomings of the K-shell method,this paper proposed an approach based on the K-shell position and neighborhood within two steps to identify influential nodes in complex networks.It refined the global position of the node according to the removal order during K-shell decomposition.Considering the local topology and global position of nodes,the proposed method identified the influential nodes based on the K-shell position of the neighborhood within two steps.To simulate the propagation process with epidemic model on eight real networks,the experiment results show that the proposed method can identify and rank the influential nodes compared with other five relative methods with better accuracy and efficiency.
关 键 词:复杂网络 关键节点 K-shell分解法 两阶邻居 传染病模型
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222