Application and comparison of kernel functions for linear parameter varying model approximation of nonlinear systems  

在线阅读下载全文

作  者:Faisal Saleem Ahsan Ali Inam-ul-hassan Shaikh Muhammad Wasim 

机构地区:[1]Department of Measurements and Control Systems,Silesian University of Technology,Gliwice,Poland [2]Department of Electrical Engineering,University of Engineering and Technology,Taxila,Pakistan [3]Department of Aeronautics and Astronautics Engineering,Institute of Space Technology,Islamabad,Pakistan

出  处:《Applied Mathematics(A Journal of Chinese Universities)》2023年第1期58-77,共20页高校应用数学学报(英文版)(B辑)

摘  要:In this paper,a comparative study for kernel-PCA based linear parameter varying(LPV)model approximation of sufficiently nonlinear and reasonably practical systems is carried out.Linear matrix inequalities(LMIs)to be solved in LPV controller design process increase exponentially with the increase in a number of scheduling variables.Fifteen kernel functions are used to obtain the approximate LPV model of highly coupled nonlinear systems.An error to norm ratio of original and approximate LPV models is introduced as a measure of accuracy of the approximate LPV model.Simulation examples conclude the effectiveness of kernel-PCA for LPV model approximation as with the identification of accurate approximate LPV model,computation complexity involved in LPV controller design is decreased exponentially.

关 键 词:kernel-PCA LMIS LPV error to norm ratio computational complexity and control design 

分 类 号:O231[理学—运筹学与控制论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象