检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:尹怡晓 郭煜东 郝萌[1] 杨飞[2] 姚振兴 崔占伟 YIN Yi-xiao;GUO Yu-dong;HAO Meng;YANG Fei;YAO Zhen-xing;CUI Zhan-wei(China Academy of Transportation Sciences,Beijing 100029,China;School of Transportation and Logistics,Southwest Jiaotong University,Chengdu 611756,China;College of Transportation Engineering,Chang′an University,Xi′an 710064,China)
机构地区:[1]交通运输部科学研究院,北京100029 [2]西南交通大学交通运输与物流学院,四川成都611756 [3]长安大学运输工程学院,陕西西安710064
出 处:《交通运输研究》2023年第1期40-50,共11页Transport Research
基 金:中央级公益性科研院所基本科研业务费项目(20224811);国家社科基金重大项目(21ZDA029);城市公共交通智能化交通运输行业重点实验室开放课题(2022-APTS-04)。
摘 要:为弥补传统的居民出行调查方法在都市圈出行调查中的不足,提出一套基于手机信令数据的都市圈跨市出行方式识别算法,通过分析不同出行方式在出行路径、出行时间、出行地点方面的差异,实现高铁、大巴及小汽车3类主要跨市出行方式识别。首先,在成都市成华区和资阳市雁江区设计都市圈出行试验,招募志愿者采集出行手机信令数据;然后,分析都市圈跨市出行连接信号基站分布特征,再基于Needleman-Wunsch序列匹配算法提取出行路径信息,区分高铁出行和公路出行;最后,针对公路出行方式构建模糊识别模型,划分小汽车和大巴车出行。研究结果显示,在志愿者出行识别中,通过与志愿者出行日志对比,所提模型出行路径识别准确率达93.80%,3种出行方式均被正确识别;在研究区域全部手机用户集计出行识别中,3种出行方式占比大致为12.79%,1.36%,85.85%,与成都交通发展研究院2021年公布的《成德眉资区域出行报告》中出行分担比基本相同(12.23%,1.36%,86.41%),证明所提算法识别效果良好。To make up for the deficiencies of traditional resident travel survey methods in metropolitan area travel survey,a set of metropolitan cross-city travel mode identification algorithms based on mobile phone signaling data were proposed.Three main modes of cross-city travel including highspeed rail,bus and car,were identified by analyzing their differences in travel paths,time,and location.Firstly,the metropolitan travel experiment between Chenghua District of Chengdu and Yanjiang District of Ziyang was designed,and volunteers were recruited to collect their mobile phone signaling data in actual metropolitan cross-city travel.Secondly,the distribution characteristics of cross-city travel connection signal base stations in metropolitan areas were analyzed,and the travel routes were extracted to distinguish between high-speed rail travel and highway travel based on the Needleman-Wunsch sequence matching algorithm.Finally,the fuzzy recognition model for road travel mode was constructed to divide the car and bus travel.The research results show that in volunteer travel identification,the travel path identification accuracy of the proposed model was up to 93.80%compared with volunteer travel logs,and all three travel modes were correctly identified.While in the aggregate travel identification of all mobile phone users in the study area,the rates of the three travel modes were12.79%,1.36%,and 85.85%,which was basically the same as the travel share ratio in the ChengduDeyang-Meishan-Ziyang Regional Travel Reports published by Chengdu Transportation Development Research Institute in 2021(12.23%,1.36%,86.41%).It is proved that the proposed algorithms have good recognition effect.
关 键 词:手机信令数据 都市圈交通 出行方式 Needleman-Wunsch 模糊识别模型
分 类 号:U491.1[交通运输工程—交通运输规划与管理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222