一种基于改进YOLOv5s-Ghost网络的交通标志识别方法  被引量:19

A traffic sign recognition method based on improved YOLOv5s-Ghost network

在线阅读下载全文

作  者:徐正军 张强[2] 许亮[1] XU Zhengjun;ZHANG Qiang;XU Liang(Tianjin Key Laboratory for Control Theory&Applications in Complicated Systems,School of Electrical Engineering and Automation,Tianjin University of Technology,Tianjin 300384,China;Beijing Aerospace Propulsion Institute,Beijing 100076,China)

机构地区:[1]天津理工大学电气工程与自动化学院天津市复杂系统控制理论与应用重点实验室,天津300384 [2]北京航天动力研究所,北京100076

出  处:《光电子.激光》2023年第1期52-61,共10页Journal of Optoelectronics·Laser

基  金:国家自然科学基金(61975151,61308120)资助项目。

摘  要:针对目前自动驾驶过程中对交通标志的识别检测速度慢的问题,提出一种改进的YOLOv5s-Ghost网络模型对交通标志进行识别的方法,在3×3运算核Ghost Net模型框架下,通过两个连续的Ghost模块构建的Ghost Bottleneck模块,并代替C3模块中全部的Bottleneck模块,与跨阶段局部网络(cross-stage position network, CSPNet)模块结合生成Ghost Bottleneck CSP模块。通过调整每个模块中加入Ghost Bottleneck模块的数量,对比实验数据得到最佳网络模型。分别用原网络和新网络对TT100K数据集进行训练,对比实验数据表明,YOLOv5s-Ghost模型的检测精度达95.1%,检测速度达到了52.6 FPS,模型大小压缩了69.3%,在保证原检测精度的情况下提高了网络的检测速度。In view of the problem of slow detection speed and large network model of traffic signs in the process of automatic driving, an improved YOLOv5s-Ghost network model is proposed to identify traffic signs.Under the framework of 3×3 computing core Ghost Net model, the Ghost Bottleneck module is constructed by two consecutive Ghost modules, which replace all the Bottleneck module of C3 modules and combine with cross-stage position network(CSPNet) to generate Ghost Bottleneck CSP module.The best network model is obtained by comparing the experimental data by adjusting the number of Ghost Bottleneck modules added to each module.The original network and the new network are respectively used to train TT100K data set.Compared experimental data show that the detection accuracy of the YOLOv5s-Ghost model is 95.1%,the detection speed reaches 52.6 FPS,and the model size is compressed by 69.3%,which improves the detection speed of the network while ensuring the original detection accuracy.

关 键 词:YOLOv5 自动驾驶 交通标志 Ghost Net Ghost Bottleneck CSP 

分 类 号:TP751.1[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象