检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:黄丝雨 刘凤连[1] 汪日伟 HUANG Siyu;LIU Fenglian;WANG Riwei(Key Laboratory on Computer Vision and System,Ministry of Education of China,Key Laboratory on Intelligence Computing and Novel Software Technology of the City of Tianjin,Tianjin University of Technology,Tianjin 300384,China;Wenzhou University of Technology,Wenzhou,Zhejiang 325035,China)
机构地区:[1]天津理工大学计算机视觉与系统教育部重点实验室和天津市智能计算及软件新技术重点实验室,天津300384 [2]温州理工学院,浙江温州325035
出 处:《光电子.激光》2023年第1期100-106,共7页Journal of Optoelectronics·Laser
基 金:国家自然科学基金(62020106004)资助项目。
摘 要:糖尿病视网膜病变(diabetic retinopathy, DR)是一种糖尿病性微血管病变,会在球结膜微血管上有所体现,球结膜血管图像的获取比眼底图像更加便捷,但微血管的特征变化微小且难以量化。为了能够对患者进行早期辅助诊断,本文依据球结膜微血管形态与DR的关联,首先对球结膜图像进行预处理,使用限制对比度自适应直方图均衡(contrast limited adaptive histogram equalization, CLAHE)算法进行图像增强,随机处理使数据增强,然后结合卷积神经网络(convolutional neural network, CNN)和Transformer各自的网络优势构建CTCNet,对处理后的球结膜血管图像进行DR分类,分类准确率达到了97.44%,敏感度97.69%,特异性97.11%,精确度97.69%,通过实验对比CNN和Transformer, CTCNet网络性能优于其他模型,能够有效识别DR。Diabetes retinopathy(DR) is a kind of diabetes microvascular disease, and it will be reflected in the bulbar conjunctival microvessels. Images of bulbar conjunctival vessels are easier to obtain than fundus images, but the characteristic changes of microvessels are subtle and difficult to quantify. In order to enable early auxiliary diagnosis of patients, according to the association between the morphology of bulbar conjunctiva microvessels and DR, this paper first preprocesses the bulbar conjunctiva images, enhances the image using the contrast limited adaptive histogram equalization(CLAHE) algorithm, and enhances the data with random processing.Then CTCNet is constructed by combining the advantages of convolutional neural network(CNN) and Transformer, and the processed images of bulbar conjunctival vessels are classified into DR.The classification accuracy reaches 97.44%,sensitivity 97.69%,specificity 97.11%,and accuracy 97.69%.Through experimental comparison between CNN and Transformer, CTCNet has better performance than other models and can effectively identify DR.
关 键 词:卷积神经网络(CNN) TRANSFORMER 糖尿病视网膜病变(DR) 球结膜血管
分 类 号:TP311[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30