一种面向旋转机械的基于Transformer特征提取的域自适应故障诊断  被引量:14

Domain adaptive fault diagnosis based on Transformer feature extraction for rotating machinery

在线阅读下载全文

作  者:黄星华 吴天舒 杨龙玉 胡友强[1] 柴毅[1] Huang Xinghua;Wu Tianshu;Yang Longyu;Hu Youqiang;Chai Yi(School of Automation,Chongqing University,Chongqing 400030,China)

机构地区:[1]重庆大学自动化学院,重庆400030

出  处:《仪器仪表学报》2022年第11期210-218,共9页Chinese Journal of Scientific Instrument

基  金:国家重点研发计划项目(2019YFB2006603);国家自然科学基金项目(U2034209)资助。

摘  要:针对基于深度学习的旋转机械故障诊断方法在新工作条件下缺乏标注数据、跨域诊断精度较低的问题,提出了一种基于Transformer的域自适应故障诊断方法。采用Transformer的变体VOLO构造特征提取器以获取细粒度更佳的故障特征表示。利用源域数据进行监督学习对源域和目标域数据的特征提取器进行预训练,并且冻结源域提取器参数以获取固定的源域特征。利用域对抗自适应策略和局部最大平均差异结合目标域未标注数据训练目标域特征提取器,实现源域特征与目标域特征的边缘分布、条件分布对齐。通过两个多工况实验对所提出的故障诊断算法进行了验证,结果表明提出的基于Transformer特征提取的域自适应故障诊断方法相比5种传统域自适应方法,在齿轮和轴承数据集上分别平均提升了22.15%和11.67%的诊断精度,证明所提出方法对于跨域诊断精度具有提升作用。To address the problems of lack of labeled data and low cross-domain diagnosis accuracy in the fault diagnosis method of rotating machinery based on deep learning under new working conditions,a domain adaptive fault diagnosis method based on Transformer is proposed.A variant of Transformer,VOLO,is used to construct the feature extractor to obtain fine-grained and better fault feature representation.The supervised learning with source domain data pretrains feature extractors on source and target domain data,and freezes source domain extractor parameters to obtain fixed source domain features.Using domain adversarial adaptive strategy and local maximum mean difference combined with target domain unlabeled data to train target domain feature extractor,the edge distribution and conditional distribution of source domain features and target domain features are aligned.The proposed fault diagnosis algorithm is evaluated by two multi-condition experiments.Results show that the proposed domain adaptive fault diagnosis method based on Transformer feature extraction is more efficient than the five traditional domain adaptive methods on gear and bearing datasets.The average diagnostic accuracy is improved by 22.15%and 11.67%,respectively,which proves that the proposed method can improve the cross-domain diagnostic accuracy.

关 键 词:特征提取 域自适应 故障诊断 深度学习 

分 类 号:TP277[自动化与计算机技术—检测技术与自动化装置] TH17[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象