检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:徐玉琴[1] 许佳敏 Xu Yuqin;Xu Jiamin(School of Electrical and Electronic Engineering,North China Electric Power University,Beijing 102206,China)
机构地区:[1]华北电力大学电气与电子工程学院,北京102206
出 处:《电测与仪表》2023年第3期33-39,共7页Electrical Measurement & Instrumentation
基 金:青年科学基金项目(51807059)。
摘 要:为了提高配电网单相接地故障的定位准确率,提出一种基于暂态零序电流图像识别的配电网单相接地故障区域定位方法。通过PSCAD实现故障仿真,构建卷积神经网络(CNN)学习所需图像集。根据单相接地故障的两值性和分化性特征,基于Python编程进行图像预处理,采用VGGNet11网络结构对预处理后的字节形式故障样本进行训练,得到故障区域定位模型,并可视化分析模型分类效果。典型10 kV配电网模型数字仿真及现场试验均表明,所提方法能够准确实现故障区域定位,不受系统接地方式、故障电阻和初始相角的影响。可采用暂态录波型故障指示器采集线路暂态零序电流,信号获取方便。In order to improve the positioning accuracy of single-phase grounding faults in distribution network,a single-phase ground fault area location based on transient zero-sequence current image recognition is proposed.First,the fault simulation is realized by PSCAD to construct the image set required for convolutional neural network(CNN)learning.Then,according to the ambiguity and differentiation characteristics of single-phase ground faults,image preprocessing is conducted based on Python programming.The pre-processed byte-form fault samples are trained by the VGGNet11 network structure to obtain a fault region localization model,and the classification effect is visually analyzed.Digital simulation and field tests of a typical 10 kV distribution network model show that the proposed method can accurately locate the fault area without being affected by the system grounding mode,fault resistance and initial phase angle.The transient oscilloscope type fault indicator can be used to collect the transient zero-sequence current of the line,and the signal acquisition is convenient.
关 键 词:单相接地故障 暂态零序电流 图像识别 卷积神经网络 故障区域定
分 类 号:TM712[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222