检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:潘梓阳 PAN Ziyang
机构地区:[1]东北大学计算机科学与工程学院,辽宁沈阳110819
出 处:《信息技术与信息化》2023年第2期38-41,共4页Information Technology and Informatization
摘 要:目前常见的车牌识别算法有神经网络算法,模板匹配算法等,无论何种车牌识别算法,在车牌发生污损情况时,其正确识别率均有较大程度的下降。为解决这一问题,提出了一种基于K-means聚类算法的车牌去污算法。采用人为控制车牌污损程度的方法定量研究本算法的去污有效性,最终发现采用该算法恢复的污损车牌图像相比于恢复前上升近一倍。在污损程度较小时,采取该算法去污后CNN网络识别正确率可以提升约50%;在污损程度较大时,采取该算法去污后CNN神经网络识别正确率可以上升一倍。
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.170