基于K-means聚类的车牌图像去污算法  被引量:1

在线阅读下载全文

作  者:潘梓阳 PAN Ziyang

机构地区:[1]东北大学计算机科学与工程学院,辽宁沈阳110819

出  处:《信息技术与信息化》2023年第2期38-41,共4页Information Technology and Informatization

摘  要:目前常见的车牌识别算法有神经网络算法,模板匹配算法等,无论何种车牌识别算法,在车牌发生污损情况时,其正确识别率均有较大程度的下降。为解决这一问题,提出了一种基于K-means聚类算法的车牌去污算法。采用人为控制车牌污损程度的方法定量研究本算法的去污有效性,最终发现采用该算法恢复的污损车牌图像相比于恢复前上升近一倍。在污损程度较小时,采取该算法去污后CNN网络识别正确率可以提升约50%;在污损程度较大时,采取该算法去污后CNN神经网络识别正确率可以上升一倍。

关 键 词:车牌识别 去污算法 K-MEANS聚类 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术] U495[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象