检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:潘雨晨 尉桢楷 洪宇[1] 徐庆婷 姚建民[1] PAN Yuchen;YU Zhenkai;HONG Yu;XU Qingting;YAO Jianmin(School of Computer Science and Technology,Soochow University,Suzhou,Jiangsu 215006,China)
机构地区:[1]苏州大学计算机科学与技术学院,江苏苏州215006
出 处:《中文信息学报》2023年第1期132-143,共12页Journal of Chinese Information Processing
基 金:国家自然科学基金(61672367,61751206,62076174)。
摘 要:属性抽取是细粒度情感分析的子任务之一,其目标是从评论文本中抽取用户所评价的属性。在特定领域中,某些属性可能会频繁出现在不同的评论文本中,称之为高频属性。高频属性具有较高的领域表征能力,易被监督学习模型感知。相对地,低频属性出现频率低,可供训练的样本总量较为稀疏,使得神经网络模型难以充分学习相应的语言现象,从而使测试阶段的低频属性抽取难度较高。由于低频属性经常与高频属性同时出现在局部文字片段之中,该文根据这一特点,提出一种融合高频属性信息的属性抽取方法:跟踪和记录模型识别的高频属性,使用卷积神经网络和注意力机制编码高频属性的上下文信息,并通过门控机制融入其他词项的表示学习过程中,辅助低频属性的识别。该文在国际语义评测大会2014和2016提供的笔记本电脑及餐馆领域数据集上进行了实验,相比于基线模型,该文方法在这两个英文数据集上F1值分别提升了2.33和1.44个百分点,并且总体性能高于现有前沿技术。Aspect extraction is one subtask of fine-grained sentiment analysis,which aims to extract the aspects that users express opinions on comments.Appearing in various comments,high-frequency aspects have strong domain representation ability and are easy to be perceived by the supervised learning model.We propose an aspect extraction method that integrates high-frequency aspects information.We track and record the high-frequency aspects recognized by model,encode the context information of high-frequency aspects by convolutional neural network and attention mechanism,and integrate the information into the representation learning process through the gated mechanism.Experiments on two benchmark datasets:Laptop of SemEval-14 and Restaurant of SemEval-16 demonstrate 2.33% and 1.44% improvement,respectively,compared with the baseline models.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49