推荐系统与隐私保护研究综述  被引量:3

Survey of recommender system and privacy protection

在线阅读下载全文

作  者:刘生昊 吴国洋 邓贤君[1] 张雨[1] 鲁宏伟[1] 何媛媛 杨天若 LIU Shenghao;WU Guoyang;DENG Xianjun;ZHANG Yu;LU Hongwei;HE Yuanyuan;YANG Tianruo(School of Cyber Science and Engineering,Hubei Key Laboratory of Distributed System Security,Hubei Engineering Research Center on Big Data Security,Huazhong University of Science and Technology,Wuhan 430074,China)

机构地区:[1]华中科技大学网络空间安全学院,分布式系统安全湖北省重点实验室,湖北省大数据安全工程技术研究中心,湖北武汉430074

出  处:《华中科技大学学报(自然科学版)》2023年第2期1-9,共9页Journal of Huazhong University of Science and Technology(Natural Science Edition)

基  金:国家自然科学基金青年科学基金资助项目(62202181);国家自然科学基金面上项目(62272182,61871209)。

摘  要:推荐系统为了能够给用户提供更好的推荐服务,须要收集大量的用户个人信息,在收集这些信息的同时增加了用户隐私泄露的风险.首先,介绍了推荐系统中的关键技术,包括基于协同关系的实体表示学习和基于图模型的实体表示学习;然后,通过对相关研究的归纳和总结,将推荐系统中的隐私保护问题按照用户敏感信息类型进行分类整理,主要分为对用户私有敏感属性的保护、对用户与物品历史交互信息的保护和对用户提交给推荐系统的信息的保护三类;在此基础上,对匿名化、差分隐私、联邦学习和对抗学习四种关键隐私保护技术进行了总结和分析,并重点梳理了这些技术的实现方法、适用场景和优缺点;最后,分析了考虑隐私保护的推荐算法中存在的问题,并尝试给出了未来可能的研究方向.In order to provide users with better recommendation services,the recommendation system needs to collect a large amount of user personal information,which increases the risk of user privacy disclosure.Firstly,the key technologies in the recommendation system were introduced,including collaborative filtering based entity representation learning and graph based entity representation learning.Secondly,through the induction and summary of relevant research,the privacy protection issues in the recommendation system were classified according to the types of user sensitive information,which are mainly divided into three categories including the protection of users’private sensitive attributes,the protection of historical interaction information between users and items,and the protection of information submitted to the recommendation system by users.On this basis,four key privacy protection technologies,namely anonymization,differential privacy,federated learning and adversarial learning,were summarized and analyzed,and the implementation methods,application scenarios,advantages and disadvantages of these technologies were highlighted.Finally,the problems of privacy preserving recommendation algorithm were analyzed and the possible research directions in the future were given.

关 键 词:推荐系统 隐私保护 数据挖掘 深度学习 联邦学习 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象