检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:许雯 温佳霖 XU Wen;WEN Jia-lin(Zhejiang Wanli University,Ningbo 315100,China)
机构地区:[1]浙江万里学院,浙江宁波315100
出 处:《物流工程与管理》2023年第2期41-45,共5页Logistics Engineering and Management
摘 要:文中以水产品冷链物流需求为研究对象,建立GM(1,1)模型和灰色BP神经网络模型对浙江省水产品冷链物流需求2021-2025年的发展变化进行了预测。利用2007-2020年浙江省水产品产量作为原始数据,从区域经济水平、市场需求水平、冷链发展水平、互联网发展水平4个方面构建需求量影响因素指标体系,并利用灰色关联度法分析影响水产品冷链物流需求变化的15个因素。通过训练对比发现灰色BP神经网络在拟合程度和预测效果上均具有优越性,预测精度可达98.967%。预测结果显示,浙江省水产品冷链物流需求将在“十四五”期间呈现出逐年稳定上升的趋势。This paper takes the aquatic products cold chain logistics demand as the research object, establishes the GM(1,1) model and the gray BP neural network model to forecast the development changes of the aquatic products cold chain logistics demand in Zhejiang province from 2021 to 2025.Using aquatic products output of Zhejiang province from 2007-2020 as the original data, from the four aspects of regional economic level, market demand level, cold chain development level and Internet development level, the demand influencing factors index system is constructed, and the 15 factors that affect the change of cold chain logistics demand of aquatic products are analyzed by the method of gray correlation degree.Through training and comparison, it is found that the gray BP neural network has advantages in fitting degree and prediction effect, and the prediction precision can reach 98.967%.The results show that the cold chain logistics demand of aquatic products in Zhejiang province will show an overall stable upward trend during the “14th Five-Year Plan” period.
关 键 词:水产品冷链物流 需求预测 GM(1 1)模型 灰色BP神经网络模型
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.44