检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李晓伟 李桂花[1] LI Xiao-wei;LI Gui-hua(School of Science,North University of China,Taiyuan 030051,Shanxi,China)
出 处:《山东大学学报(理学版)》2023年第1期10-15,共6页Journal of Shandong University(Natural Science)
基 金:国家自然科学基金资助项目(11801340);山西省自然科学基金资助项目(201901D111179)。
摘 要:建立了考虑环境病毒影响的COVID-19传染病SEIARc模型,并对其进行了动力学性态分析。首先利用下一代矩阵法计算得到系统的基本再生数R_(0)^(*),进一步通过分析得到:当R_(0)^(*)<1时,无病平衡点存在且局部渐近稳定,并利用Metzler矩阵等相关理论证明了无病平衡点的全局渐近稳定性;当R_(0)^(*)>1时,系统存在唯一的地方病平衡点,且给出了地方病平衡点局部渐近稳定的条件。最后通过数值模拟发现地方病平衡点是全局渐近稳定的。研究表明,通过减少环境病毒的来源或切断传播途径,可以有效地控制COVID-19疾病的传播。To investigate the dynamics of COVID-19 infectious disease with environmental virus effects, we establish an SEIARc model and analyse its dynamic behaviors. Firstly, the next generation matrix method is used to calculate the basic reproduction number R_(0)^(*). When R_(0)^(*)<1, the disease-free equilibrium exists and is locally asymptotically stable. Furthermore, by using of Metzler matrix and other related theories, we prove that the globally asymptotic stability of the disease-free equilibrium. When R_(0)^(*)>1, the system always has a unique endemic equilibrium, and the conditions for the locally asymptotic stability of the equilibrium of endemic diseases are given. Finally, by numerical simulation, the results of the theoretical analysis and the globally asymptotic stability of the endemic equilibrium is verified. It is shown that the transmission of COVID-19 disease can be effectively controlled by reducing the source of the environmental virus or cutting off the transmission routes.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33