白酒企业新产品销售预测模型构建研究  

Research on the Prediction Model of New Product Sales in Baijiu Enterprise

在线阅读下载全文

作  者:何源 何亮[2] HE Yuan;HE Liang(Mianyang City College,Mianyang 621000,Sichuan,China;Tianfu College of Southwestern University of Finance and Economics,Mianyang 621000,Sichuan,China)

机构地区:[1]绵阳城市学院经济管理学院,四川绵阳621000 [2]西南财经大学天府学院现代服务管理学院,四川绵阳621000

出  处:《酿酒》2023年第2期29-31,共3页Liquor Making

摘  要:白酒企业新产品上市前往往会提前做销售预测和试销,由于新产品没有历史销售数据和同类似产品作参照,销售预测更多依赖个人经验估计;时间序列、回归分析等销售预测方法的匹配度和依赖性也不能更好的解决企业真实需求。目前,基于创新扩散理论的ATAR新产品销售模型研究应用十分匮乏,基于创新扩散理论,运用ATAR模型,结合白酒企业产品营销常规操作特性,通过ATAR关键对应识别,构建出“白酒企业新产品销售预测模型”,该模型包含具体内容和测试方法,对测试结果数据乘积计算得到预测结果,针对预测结果提出对策,帮助白酒企业估新产品导入市场接受程度,预测新产品未来销售前景,及时发现新产品存在问题,通过销售预测进行财务分析,调整新产品营销策略。In Baijiu enterprises new products, sales forecasts and trial sales are often made ahead of time. When new products do not have historical sales data and similar products, sales forecasts rely more on personal experience estimation. The matching degree and dependence of sales forecasting methods such as time series and regression analysis can not better solve the real needs of enterprises. At present, the application of ATAR diffusion model based on the theory of innovation diffusion is very scarce. Based on the theory of diffusion of innovation,this paper applies ATAR model to combine the conventional operation characteristics of Baijiu enterprises, and constructs a new sales forecasting model of Baijiu new products by ATAR key correspondence recognition. The model contains specific contents and testing methods, and the prediction results are obtained by product data calculation of test results. According to the forecast results, we will propose countermeasures to help Baijiu enterprises to estimate the market acceptance of new products, predict the future sales prospects of new products, find out the problems of new products in time, make financial analysis through sales forecasts, and adjust the marketing strategy of new products.

关 键 词:白酒新产品 销售预测 ATAR模型 创新扩散理论 

分 类 号:TS262.3[轻工技术与工程—发酵工程] F274[轻工技术与工程—食品科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象