检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Huiqian LI Jin HUANG Zhong CAO Diange YANG Zhihua ZHONG
机构地区:[1]School of Vehicle and Mobility,Tsinghua University,Beijing 100084,China [2]Chinese Academy of Engineering,Beijing 100088,China
出 处:《Frontiers of Information Technology & Electronic Engineering》2023年第1期131-140,共10页信息与电子工程前沿(英文版)
基 金:Project supported by the National Natural Science Foundation of China(Nos.61872217,U20A20285,52122217,and U1801263);the Key R&D Projects of the Ministry of Science and Technology of China(No.2020YFB1710901)。
摘 要:Ensuring the safety of pedestrians is essential and challenging when autonomous vehicles are involved.Classical pedestrian avoidance strategies cannot handle uncertainty,and learning-based methods lack performance guarantees.In this paper we propose a hybrid reinforcement learning(HRL)approach for autonomous vehicles to safely interact with pedestrians behaving uncertainly.The method integrates the rule-based strategy and reinforcement learning strategy.The confidence of both strategies is evaluated using the data recorded in the training process.Then we design an activation function to select the final policy with higher confidence.In this way,we can guarantee that the final policy performance is not worse than that of the rule-based policy.To demonstrate the effectiveness of the proposed method,we validate it in simulation using an accelerated testing technique to generate stochastic pedestrians.The results indicate that it increases the success rate for pedestrian avoidance to 98.8%,compared with 94.4%of the baseline method.
关 键 词:PEDESTRIAN Hybrid reinforcement learning Autonomous vehicles DECISION-MAKING
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222