Stochastic pedestrian avoidance for autonomous vehicles using hybrid reinforcement learning  被引量:3

在线阅读下载全文

作  者:Huiqian LI Jin HUANG Zhong CAO Diange YANG Zhihua ZHONG 

机构地区:[1]School of Vehicle and Mobility,Tsinghua University,Beijing 100084,China [2]Chinese Academy of Engineering,Beijing 100088,China

出  处:《Frontiers of Information Technology & Electronic Engineering》2023年第1期131-140,共10页信息与电子工程前沿(英文版)

基  金:Project supported by the National Natural Science Foundation of China(Nos.61872217,U20A20285,52122217,and U1801263);the Key R&D Projects of the Ministry of Science and Technology of China(No.2020YFB1710901)。

摘  要:Ensuring the safety of pedestrians is essential and challenging when autonomous vehicles are involved.Classical pedestrian avoidance strategies cannot handle uncertainty,and learning-based methods lack performance guarantees.In this paper we propose a hybrid reinforcement learning(HRL)approach for autonomous vehicles to safely interact with pedestrians behaving uncertainly.The method integrates the rule-based strategy and reinforcement learning strategy.The confidence of both strategies is evaluated using the data recorded in the training process.Then we design an activation function to select the final policy with higher confidence.In this way,we can guarantee that the final policy performance is not worse than that of the rule-based policy.To demonstrate the effectiveness of the proposed method,we validate it in simulation using an accelerated testing technique to generate stochastic pedestrians.The results indicate that it increases the success rate for pedestrian avoidance to 98.8%,compared with 94.4%of the baseline method.

关 键 词:PEDESTRIAN Hybrid reinforcement learning Autonomous vehicles DECISION-MAKING 

分 类 号:U471.1[机械工程—车辆工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象