检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:周跃进 杨林 ZHOU Yuejin;YANG Lin(School of Mathematics and Big Data,Anhui University of Science and Technology,Huainan Anhui 232001,China)
机构地区:[1]安徽理工大学数学与大数据学院,安徽淮南232001
出 处:《安徽理工大学学报(自然科学版)》2022年第6期71-78,共8页Journal of Anhui University of Science and Technology:Natural Science
摘 要:针对一致性预测支持向量机的多分类问题,提出了两种多分类算法,分别是基于一致性预测一对多支持向量机算法(One-Vs-Rest Support Vector Machine Algorithm Via Conformal Predictors,OVR SVM CP)和基于一致性预测一对一支持向量机算法(One-Vs-One Support Vector Machine Algorithm Via Conformal Predictors,OVO SVM CP)。首先,将多分类问题转化为二分类问题,利用决策函数定义奇异值函数。然后,对这两种算法进行数值模拟实验,并与OVO SVM、OVO LSSVM、OVO TWSVM、HSVM算法相比较。最后,将两种算法应用于6组真实数据集测试其分类预测效果。仿真实验和真实数据应用结果表明,提出的两种算法预测效果较好,相比于其他3种的支持向量机算法有更高的预测准确率。For the multi-classification problem of the support vector machine via conformal predictors,the authors propose two multi-classification algorithms in this paper,One-Vs-Rest Support Vector Machine Algorithm via Conformal Predictors(OVR SVM CP)and One-Vs-One Support Vector Machine Algorithm via Conformal Predictors(OVO SVM CP).Firstly,the multi-classification problem was transformed into a binary classification problem,and the nonconformity measure was defined by the decision function.Then,the numerical simulation experiments were conducted for the two algorithms,and then compared with the OVO SVM,OVO LSSVM and OVO TWSVM,HSVM algorithm.Finally,the two algorithms were applied to six real data sets to test their predictive effects.The results of simulation experiment and real data application show that the proposed two algorithms have good predictive effects and higher prediction accuracy than that of three other support vector machine algorithms.
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.17.145.236