检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:聂根定 梁燕 王立冬 马文[1,2] 黎明 NIE Gending;LIANG Yan;WANG Lidong;MA Wen;LI Ming(Department of Oral and Maxillofacial Surgery,Kunming Medical University School and Hospital of Stomatology,Kunming 650106,China;Yunnan Key Laboratory of Stomatology,Kunming 650106,China;Teaching Management Office,Kunming Medical University School and Hospital of Stomatology,Kunming 650106,China)
机构地区:[1]昆明医科大学口腔医学院/医院口腔颌面外科,云南昆明650106 [2]云南省口腔医学重点实验室,云南昆明650106 [3]昆明医科大学口腔医学院/医院教学管理办公室,云南昆明650106
出 处:《口腔医学研究》2023年第3期211-216,共6页Journal of Oral Science Research
基 金:云南省“高层次人才培养支持计划”(编号:YNWR-MY-2020-086)云南省昆医联合项目-面上项目(编号:202001AY070001-250)昆明医科大学校级教研教改项目(编号:2020-JY-Y-041、2022-JY-Y-149)。
摘 要:目的:探讨CBCT影像组学特征在颌骨成釉细胞瘤术前诊断中的应用价值。方法:回顾性分析104例经病理学诊断的颌骨囊性病变的患者CBCT资料(包括成釉细胞瘤45例、牙源性颌骨囊肿59例)。勾画病变区域并提取影像组学特征,通过特征筛选建立影像组学标签,构建支持向量机、随机森林和逻辑回归分类器模型;结合常规影像学特征建立综合模型。分别用训练集、验证集数据进行训练和评价,以曲线下面积(AUC值)、准确率(ACC)评价模型的诊断性能。结果:利用影像组学特征构建的3种模型在测试集中的准确率均为81.3%,AUC值分别为0.849(95%CI:0.707~0.991)、0.865(95%CI:0.734~0.996)和0.849(95%CI:0.703~0.995),结合常规影像学特征后的准确率分别为81.3%,81.3%和84.4%,AUC分别为0.877(95%CI:0.751~1.000)、0.873(95%CI:0.747~0.999)和0.889(95%CI:0.765~1.000)。无论在3种模型之间或影像组学模型与综合模型之间均无统计学意义。结论:基于CBCT影像组学特征构建的预测模型在成釉细胞瘤术前诊断中具有较高的诊断性能,可用于辅助诊断成釉细胞瘤,指导治疗计划的选择。Objective:To investigate the application value of CBCT radiomics features in preoperative diagnosis of ameloblastoma of the jaw.Methods:A retrospective analysis of the CBCT data of 104 patients pathologically diagnosed as cystic lesions of the jaw was conducted,including 45 cases of ameloblastoma and 59 cases of odontogenic cyst.The radiomics features of the lesion area were extracted by manually drawing lesion areas.Radiomics labels were established by feature screening,and support vector machine,random forest,and logistic regression classifier models were constructed.A comprehensive model was established by combining conventional radiologic characteristics.The data of the training set and validation set were used for training and evaluating,and the area under the curve(AUC)and accuracy rate(ACC)were used to evaluate the diagnostic performance of the model.Results:In the testing set,the accuracy of the three models based on radiomics features was all 81.3%,and the AUC values of the radiomics models were 0.849(95%CI:0.707-0.991),0.865(95%CI:0.734-0.996),and 0.849(95%CI:0.703-0.995),respectively.Combined with conventional radiologic features,the accuracy was 81.3%,81.3%,and 84.4%,and the AUC values of the comprehensive models were 0.877(95%CI:0.751-1.000),0.873(95%CI:0.747-0.999),and 0.889(95%CI:0.765-1.000),respectively.However,neither between three models nor the radiomics and comprehensive models had a significant difference(P>0.05).Conclusion:The prediction model based on CBCT radiomics features has high diagnostic performance in preoperative diagnosis of ameloblastoma,which can be used to assist diagnosis of ameloblastoma and guide the selection of a treatment plan.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200