检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王锦红 蒋海昆[2] WANG Jinhong;JIANG Haikun(Institute of Earthquake Forecasting,China Earthquake Administration,Beijing 100036,China;China Earthquake Networks Center,Beijing 100045,China)
机构地区:[1]中国地震局地震预测研究所,北京100036 [2]中国地震台网中心,北京100045
出 处:《地震研究》2023年第2期173-187,共15页Journal of Seismological Research
基 金:地震动力学国家重点实验室开放基金(LED2022B05).
摘 要:机器学习突出的隐式特征提取和复杂任务处理能力正推动着地震预测科学的发展,为系统了解机器学习技术在地震预测领域的发展现状,从指定时空窗的地震震级预测、发震位置和发震时间估计三方面,综述了国内外机器学习在地震预测领域中的应用,其中在震级预测问题上AI应用最为广泛;总结了机器学习地震预测的主要特征参数、模型和评价相关问题,从多种评价机制中探索地震活动性参数对地震预测结果的影响,并对地震预测领域存在的问题进行初步讨论和展望。在可预见的未来,AI技术的引入和应用领域的拓展,有可能引领地震预测领域的持续发展。Machine learning’s prominent implicit feature extraction and complex task processing capabilities are driving the science of earthquake prediction.In order to systematically understand the development status of machine learning technology in the field of earthquake prediction,this paper focuses on the application of machine learning in the field of earthquake prediction at home and abroad in recent years from the three aspects of earthquake magnitude prediction,earthquake location and earthquake occurrence time estimation in a specified time-space window,among which AI is the most widely used in earthquake magnitude prediction.In addition,this paper summarizes the main characteristic parameters,models and evaluation related issues of machine learning earthquake prediction,and explores the influence of seismicity parameters on earthquake prediction results from various evaluation mechanisms.Finally,a preliminary discussion and outlook on the problems existing in the field of earthquake prediction will be conducted.In the foreseeable future,the introduction of AI technology and the expansion of application fields are likely to lead the continuous development of the field of earthquake prediction.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7