检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:雷静[1] 李明明 LEI Jing;LI Ming-ming(School of Foreign Studies,Minzu University of China,Beijing 100081,China)
出 处:《大连民族大学学报》2023年第2期176-182,共7页Journal of Dalian Minzu University
基 金:中央民族大学校级项目(2022QNYL14)。
摘 要:AI时代神经网络翻译技术的飞速发展催生了一批视频译制平台。以“人人译视界”和“讯飞听见字幕”为研究对象,以动画作品《中华勤学故事》机翻字幕为研究素材,探究国内视频译制平台机翻字幕质量。基于FAR语际字幕评估模型提出了机翻字幕评估模型(FAR 2.0),从功能对等、接受程度、阅读体验三方面对机翻字幕的语义错误、术语翻译错误、译文冗余等问题进行了深入分析。根据研究结果,提出增强语音数据标注积累、加大机器翻译语料训练及强化翻译引擎的意群切分等三点优化建议。With the rapid development of neural machine translation technology in the AI era,a number of video translation platforms have emerged.In order to evaluate the quality of machine-generated subtitling,this paper takes“YSJ”and“Iflyrec”as the research objects,and the machine-generated subtitles of the cartoon“Chinese Stories of Study”as the material when doing the assessing.This study tries to propose a model for assessing machine-generated subtitle(FAR 2.0)based on the FAR model by Jan Pedersen,and analyses semantic error,term error,and redundancy phenomenon from three parameters:functional equivalence,acceptability and readability.This paper gives the following three suggestions for optimization:firstly,enhance the accumulation of speech data annotation;secondly,increase data training on the various corpus;thirdly,enhance the segmentation and combination ability of the translation engine.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33