检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴剑云[1] 于安双 WU Jianyun;YU Anshuang(Business School,Qingdao University,Qingdao 266071,Shandong,China;SILC Business School,Shanghai University,Shanghai 201800,China)
机构地区:[1]青岛大学商学院,山东青岛266071 [2]上海大学悉尼工商学院,上海201800
出 处:《实验室研究与探索》2022年第12期132-137,共6页Research and Exploration In Laboratory
基 金:山东省高等学校“青创科技计划”(2019RWG031);青岛大学创新型教学实验研究项目(CXSYYB202232)。
摘 要:交通流通常具有复杂时空关联性,且易受天气、速度等外部因素的影响。为提高高速公路关键节点交通流预测的准确性,设计一种基于ConvLSTM网络且融合时空关联性和外部因素的交通流预测模型——STE-ConvLSTM。构建交通流、速度、天气时空矩阵,将其延深度方向堆叠,通过滑动窗口模型将其处理为类图像时间序列数据,利用ConvLSTM网络提取交通流的时空关联性和外部因素特征;利用卷积层实现交通流预测多变量多步输出。实验结果表明,相较于传统的交通流预测模型,该模型在交通流多步预测方面的预测准确度有所提升。Traffic flow usually has complex temporal and spatial correlations,and is susceptible to external factors such as weather and traffic speed.In order to improve the accuracy of traffic flow prediction at key nodes of the expressway,a traffic flow prediction model,STE-ConvLSTM model,based on convolutional LSTM network and integrating spatio-temporal correlation and external factors is designed.Firstly,the spatio-temporal matrix of traffic flow,speed and weather is constructed,and stacked in the direction of depth,which is processed into time series data of image-like images by sliding window model,and the characteristics of spatio-temporal correlation and external factors of traffic flow are extracted by ConvLSTM network;finally,the multi-variable multi-step output of traffic flow prediction is realized by using convolutional layers.Experimental results show that compared with the traditional traffic flow prediction model,the prediction accuracy of the model in terms of multi-step prediction of traffic flow is improved.
关 键 词:ConvLSTM网络 深度学习 交通流预测 高速公路
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222