检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘恒燕 张立民 闫文君 谭凯文 张聿远 LIU Hengyan;ZHANG Limin;YAN Wenjun;TAN Kaiwen;ZHANG Yuyuan(Academy of Aeronautical Operations Service,Naval Aviation University,Yantai 264001,China)
机构地区:[1]海军航空大学航空作战勤务学院,山东烟台264001
出 处:《系统工程与电子技术》2023年第4期1215-1221,共7页Systems Engineering and Electronics
基 金:国家自然科学基金(91538201);泰山学者工程专项经费基金(ts201511020);信息系统安全技术重点实验室基金(6142111190404)资助课题。
摘 要:为了更好地实现高误码条件下稀疏校验矩阵的重建,将寻找校验向量的过程转换为求解线性方程组的过程,充分利用稀疏校验矩阵的稀疏性,通过寻找包含所有校验比特的子线性方程组的解来重建稀疏校验矩阵,并利用该矩阵对码字进行软译码,以纠正错误码字,对纠正后的码字继续重建稀疏校验矩阵,不断重复该过程,选取所有迭代过程中重建率最高的稀疏校验矩阵作为最终结果。仿真结果表明,提出的稀疏校验矩阵算法可以在高误码条件下有效重建双对角结构及非双对角结构的稀疏校验矩阵,对误码的鲁棒性较强。In order to better realize the reconstruction of sparse check matrix under the condition of high bit error,the process of finding check vectors is converted into the process of solving linear equations,making full use of the sparseness of sparse check matrix.The sparse check matrix is firstly reconstructed by the solution of the sub-linear equation system containing all check bits,and the matrix is used to soft-decode the codeword to correct the erroneous codeword,and continue to reconstruct the sparse check matrix for the corrected codeword.The process is repeated continuously,and the sparse check matrix with the highest reconstruction rate in all the iterative processes is selected as the final result.The simulation results show that the proposed sparse check matrix algorithm can effectively reconstruct the sparse check matrix of bidiagonal structure and non-bidiagonal structure under the condition of high bit error,and has strong robustness to bit errors.
分 类 号:TN92[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.23.101.186