检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张诗慧 罗晖[1] 裴莹玲 余俊英 徐杰 ZHANG Shihui;LUO Hui;PEI Yingling;YU Junying;XU Jie(School of Information Engineering,East China Jiaotong University,Nanchang 330013,China;Jiangxi Huitong Technology Development Co.,Ltd.,Nanchang 330013,China)
机构地区:[1]华东交通大学信息工程学院,南昌330013 [2]江西慧通科技发展有限责任公司,南昌330013
出 处:《计算机工程与应用》2023年第6期310-317,共8页Computer Engineering and Applications
基 金:江西省教育厅科学技术研究重点项目(GJJ200603);江西省重点研发计划项目(20202BBEL53001)。
摘 要:针对高铁无砟轨道板表面裂缝尺度差异大、裂缝类别不平衡等问题,提出了基于改进RetinaNet的裂缝检测方法。为了缓解下采样与特征金字塔横向连接压缩而导致的细微信息丢失的问题,利用多级特征金字塔融合ResNet-50主干网络中提取的不同层次的深浅特征,实现了图像特征信息的充分表达;为了解决检测过程中表面裂缝的分类和定位置信度之间不匹配的问题,提出自适应锚点学习使锚点与网络模型同时进行优化,提高了对小尺度裂缝的检测精度;为了缓解裂缝类别不平衡对检测性能的影响,引入焦点损失函数(Focal Loss)作为分类损失函数,并在其中添加类平衡权重项因子,提升了对小类别裂缝的检测精度。实验结果表明,改进RetinaNet检测网络对高铁无砟轨道板不同类别的裂缝均获得了较好的效果,平均检测精度(mAP)达到72.58%,较之原始RetinaNet检测网络提高了3.60个百分点,有效实现了对不同尺度裂缝的准确检测。A crack detection method based on improved RetinaNet is proposed to address the problems of large difference between scales and unbalanced crack types in the surface of ballastless slab track of high-speed railway.To alleviate the problem of subtle information loss caused by downsampling and horizontal connection compression of feature pyramid,multi-level feature pyramid network is used to integrate different depth features extracted from ResNet-50 backbone net-work to achieve full expression of image feature information.To solve the problem of mismatching between the classifica-tion and positioning confidence of surface cracks in the detection process,adaptive anchor learning is proposed to opti-mize the anchor and the network model at the same time,which improves the detection accuracy of small-scale cracks.To alleviate the impact of crack category imbalance in detection performance,Focal Loss function is introduced as the classi-fication loss function,and weight factor of class balance is added to improve the detection accuracy of small types of cracks.The experimental results show that the improved RetinaNet detection network achieves good results on different crack types in the ballastless slab track of high-speed railway,and the mean average precision(mAP)is 72.58%,which is 3.60 percentage points higher than that of the original RetinaNet detection network,effectively realizes the accurate detec-tion of cracks of different scales.
关 键 词:目标检测 高铁无砟轨道板 裂缝检测 RetinaNet 多级特征金字塔 锚点 Focal Loss
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15