检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:宋云霞 周彬 SONG Yun-xia;ZHOU Bin(School of Astronautics,Harbin Institute of Technology,Harbin 15000l,China)
出 处:《控制与决策》2023年第2期562-568,共7页Control and Decision
基 金:国家自然科学基金项目(61773140)。
摘 要:首先,针对具有多个时滞的积分时滞系统,建立新的基于线性矩阵不等式的稳定性条件.该条件与正整数k有关,给出k=1时该条件与现有结果间的关系.该关系表明所提出条件在k?2时的保守性比现有结果小;然后,基于所提出的稳定性条件,进一步研究具有参数不确定性的积分时滞系统的鲁棒稳定性问题,建立基于线性矩阵不等式的充分条件;最后,利用所提出方法,研究具有多个离散时滞和分布时滞的积分时滞系统的稳定性问题.数值算例结果表明了所提出稳定性判据的有效性.This paper investigates the stability analysis of integral delay systems with multiple delays. A new stability condition in terms of linear matrix inequalities(LMIs) indexed by a positive integer k is provided. When k = 1, the relationship between this condition and an existing result is revealed, which shows that the proposed condition with k ? 2 can be less conservative than the existing ones. Based on the proposed stability condition, the robust stability problem for perturbed integral delay systems is investigated, and the results are expressed using LMIs. By using the proposed method, the stability analysis of integral time-delay systems with multiple discrete and distributed time delays are studied. Numerical examples demonstrate the effectiveness of the established results.
关 键 词:积分时滞系统 稳定性 鲁棒稳定性 线性矩阵不等式
分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15