检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:姜楠 黄丹君 JIANG NAN;HUANG DANJUN(Peking University New Century School-When Zhou,Whenzhou 325006,China;Department of Mathematics,Zhejiang Normal University,Jinhua 321004,China)
机构地区:[1]北大新世纪温州附属学校,温州325006 [2]浙江师范大学数学与计算机科学学院,金华321004
出 处:《应用数学学报》2023年第1期114-125,共12页Acta Mathematicae Applicatae Sinica
基 金:国家自然科学基金(12171436)资助项目。
摘 要:图G的边分解是指将G分解成子图G1,G2,...,Gm,使得E(G)=E(G_(1))∪…∪E(G_(m)),且对任意i≠j,有E(G_(i))∩E(G_(j))=φ.若一个森林的每个连通分支都是路,则称该森林为线性森林.图G的线性荫度la(G)是指使得G可以边分解为m个线性森林的最小整数m.本文证明了Δ(G)≥15的IC-平面图G的线性荫度为[Δ(G)/2],这里Δ(G)是图G的最大度.An edge-part it ion of a graph G is a decomposition of G into subgraphs G1,G2,…,Gmsuch that E(G)=E(G1) ∪…∪ E(Gm) and E(Gi)∩E(Gj)=φ for i≠j.A linear forest is a forest in which each connected component is a path.The linear arboricity la(G) is the least integer m such that G can be edge-partitioned into m linear forests.In this paper,we study the linear arboricity la(G) of IC-planar graphs,and prove that la(G)=[Δ(G)/2] for each IC-planar graph G with Δ(G)≥15,whereΔ(G) is the maximum degree of G.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.179