基于模糊自抗扰的光伏储能控制策略研究  被引量:4

Research on Photovoltaic Energy Storage Control Strategy Based on Fuzzy Auto Disturbance Rejection

在线阅读下载全文

作  者:农宝翔 杨超[1] 杜刃刃 刘康康 NONG Baoxiang;YANG Chao;DU Renren;LIU Kangkang(The Electrical Engineering College,Guizhou University,Guiyang 550025,China;Guian Power Supply Bureau of Guizhou Power Grid Co.,Ltd.,Guiyang 550025,China;Tongren Power Supply Bureau of Guizhou Power Grid Co.,Ltd.,Tongren 554300,China)

机构地区:[1]贵州大学电气工程学院,贵州贵阳550025 [2]贵州电网有限责任公司贵安供电局,贵州贵阳550025 [3]贵州电网有限责任公司铜仁供电局,贵州铜仁554300

出  处:《电力科学与工程》2023年第3期17-24,共8页Electric Power Science and Engineering

基  金:贵州省科学技术基金(黔科合基础-ZK[2021]一般277)。

摘  要:针对光储系统使用传统比例微分控制自适应能力差、动态响应时间慢、超调量大以及受干扰时母线电压波动大等问题,提出基于模糊自抗扰的混合储能混合控制策略。采用模糊控制器思想对自抗扰控制参数进行在线整定,赋予自抗扰控制器自调节能力;用模糊自抗扰控制替换传统比例微分控制电压环,构成基于模糊自抗扰的共电压环的双闭环控制结构。将传统的比例微分控制和自抗扰控制进行仿真对比,结果表明,所提出的自抗扰控制在启动时几乎无超调,动态响应速度更快,母线电压波动更小。Aiming at the problems of poor adaptive ability,slow dynamic response time,large overshoot and large fluctuation of busbar voltage when the system is disturbed by optical storage system using traditional PI,a hybrid energy storage hybrid control strategy based on fuzzy auto-disturbance rejection is proposed.The fuzzy controller idea is used to adjust the auto-disturbance rejection control parameters online,give the self-rejection controller self-adjustment ability,replace the traditional PI control voltage loop with the fuzzy auto-disturbance rejection control,and form a double closed-loop control structure based on the fuzzy auto-disturbance rejection common voltage loop.Compared with the traditional PI control and auto-disturbance rejection control,the results the system is almost no overshoot when the system is started under this control strategy,the dynamic response speed is faster,and the bus voltage fluctuation is smaller.

关 键 词:电力系统稳定 光伏发电 混合储能 自抗扰控制 模糊控制 

分 类 号:TM761[电气工程—电力系统及自动化] TM615

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象