Self-adaptive label filtering learning for unsupervised domain adaptation  

在线阅读下载全文

作  者:Qing TIAN Heyang SUN Shun PENG Tinghuai MA 

机构地区:[1]School of Computer and Software,Nanjing University of Information Science and Technology,Nanjing 210044,China [2]Engineering Research Center of Digital Forensics,Ministry of Education,Nanjing University of Information Science and Technology,Nanjing 210044,China

出  处:《Frontiers of Computer Science》2023年第1期225-227,共3页中国计算机科学前沿(英文版)

基  金:supported by the National Natural Science Foundation of China(Grants Nos.62176128 and 61702273);the Natural Science Foundation of Jiangsu Province(BK20170956);the Open Projects Program of National Laboratory of Pattern Recognition(202000007);the Fundamental Research Funds for the Central Universities(NJ2019010);the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)fund,the Postgraduate Research&Practice Innovation Program of Jiangsu Province KYCX21_1006,and was also sponsored by the Qing Lan Project.

摘  要:1 Introduction As an emerging machine learning paradigm,unsupervised domain adaptation(UDA)aims to train an effective model for unlabeled target domain by leveraging knowledge from related but distribution-inconsistent source domain.Most of the existing UDA methods[2]align class-wise distributions resorting to target domain pseudo-labels,for which hard labels may be misguided by misclassifications while soft labels are confusing with trivial noises so that both of them tend to cause frustrating performance.To overcome such drawbacks,as shown in Fig.1,we propose to achieve UDA by performing self-adaptive label filtering learning(SALFL)from both the statistical and the geometrical perspectives,which filters out the misclassified pseudo-labels to reduce negative transfer.Specifically,the proposed SALFL firstly predicts labels for the target domain instances by graph-based random walking and then filters out those noise labels by self-adaptive learning strategy.

关 键 词:FILTERING RESORT OVERCOME 

分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象