检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:黄琳[1] 陈飞[1] 曾勋勋[2] HUANG Lin;CHEN Fei;ZENG Xun-Xun(College of Computer and Data Science/College of Software,Fuzhou University,Fuzhou 350108,China;School of Mathematics and Statistics,Fuzhou University,Fuzhou 350108,China)
机构地区:[1]福州大学计算机与大数据学院/软件学院,福州350108 [2]福州大学数学与统计学院,福州350108
出 处:《计算机系统应用》2023年第3期58-69,共12页Computer Systems & Applications
基 金:国家自然科学基金(61771141);福建省教育厅中青年教师教育科研项目(JAT190020);福建省自然科学基金(2021J01620)。
摘 要:在图像的采集过程中,图像往往会带有一定的噪声信息,这些噪声信息会破坏图像的纹理结构,进而干扰语义分割任务.现有基于带噪图像的语义分割方法,大都是采取先去噪再分割的模型.然而,这种方式会导致在去噪任务中丢失语义信息,从而影响分割任务.为了解决该问题,提出了一种多尺度多阶段特征融合的带噪图像语义分割的方法,利用主干网络中各阶段的高级语义信息以及低级图像信息来强化目标轮廓语义信息.通过构建阶段性协同的分割去噪块,迭代协同分割和去噪任务,进而捕获更准确的语义特征.在PASCAL VOC 2012和Cityscapes数据集上进行了定量评估,实验结果表明,在不同方差的噪声干扰下,模型依旧取得了较好的分割结果.In the process of image acquisition, the image often contains certain noise information, which will destroy the texture structure of the image and thus interfere with semantic segmentation tasks. Most of the existing semantic segmentation methods based on noisy images adopt models featuring first denoising and then segmentation. However,they often lead to the loss of semantic information in denoising tasks, which thus affects segmentation tasks. To solve this problem, this study proposes a multi-scale and multi-stage feature fusion method for semantic segmentation of noisy images, which uses the high-level semantic information and low-level image information of each stage in the backbone network to enhance the semantic information of target contours. By constructing a staged collaborative segmentation denoising block, collaborative segmentation and denoising tasks are iterated, and then more accurate semantic features are captured. In addition, quantitative evaluation is carried out on PASCAL VOC 2012 and Cityscapes datasets. The experimental results show that the model still achieves positive segmentation results under the noise interference of different variances.
关 键 词:语义分割 图像去噪 协同任务 特征融合 注意力机制
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.12