股利情绪、股利迎合与股价崩盘风险——基于百度指数平台搜索量的经验证据  被引量:13

Dividend sentiment,dividend catering and stock price crash risk:Evidence based on searching volume of Baidu Index platform

在线阅读下载全文

作  者:罗琦[1] 张志达 吴希梅 喻天琦 LUO Qi;ZHANG Zhi-da;WU Xi-mei;YU Tian-qi(School of Economics and Management,Wuhan University,Wuhan 430072,China)

机构地区:[1]武汉大学经济与管理学院,武汉430072

出  处:《管理科学学报》2023年第2期87-103,共17页Journal of Management Sciences in China

基  金:国家自然科学基金资助项目(72273099,71772140)。

摘  要:通过Python爬取百度指数平台搜索量数据构建投资者现金股利情绪指数和高送转情绪指数,并以此为基础考察A股上市公司的股利迎合行为及其经济后果.研究结果表明,公司现金股利分配和高送转行为均呈现出明显的迎合特征,并且公司对投资者现金股利情绪和高送转情绪的迎合会导致股价崩盘风险上升.本文进一步研究发现,公司在具有融资需求的情况下实施现金股利迎合和高送转迎合的动机强烈,而在大股东存在减持意愿的情况下倾向于实施高送转迎合.本文通过构建大数据股利情绪指数对公司股利迎合行为的相关研究成果进行了有益的拓展,并对优化我国上市公司股利决策以及提高资本市场运行效率具有重要借鉴意义.This paper crawls the searching volume data of Baidu Index platform through Python to construct investor cash dividend sentiment index and large stock dividend sentiment index.Then dividend catering of A-share listed companies and its economic consequences are examined based on the constructed indices.The paper finds that both corporate cash dividend distributions and large stock dividend decisions present obvious catering characteristics,and that corporate dividend catering can increase corporate stock price crash risk.Furthermore,companies with financing needs have a strong incentive to implement cash dividend catering and large stock dividend catering,while companies whose large stockholders have a willingness to sell their shares are inclined to implement large stock dividend catering.This paper not only expands the achievements in corporate dividend catering research by constructing big data dividend sentiment indexes,but also has important implications for optimizing corporate dividend policy and improving the efficiency of capital market operation.

关 键 词:现金股利情绪 高送转情绪 股利迎合 股价崩盘风险 百度指数 

分 类 号:F275[经济管理—企业管理] F832.5[经济管理—国民经济]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象