融合光谱形态特征的苹果霉心病检测方法  被引量:9

Detection method for apple moldy cores based on spectral shape featur

在线阅读下载全文

作  者:刘昊灵 张仲雄 陈昂 浦育歌 赵娟 胡瑾[1,2,3] LIU Haoling;ZHANG Zhongxiong;CHEN Ang;PU Yuge;ZHAO Juan;HU Jin(College of Mechanical and Electronic Engineering,Northwest A&F University,Yangling,712100,China;Key Laboratory of Agricultural Internet of Things,Ministry of Agriculture and Rural Affairs,Yangling,712100,China;Shaanxi Key Laboratory of Agricultural Information Perception and Intelligent Services,712100,China)

机构地区:[1]西北农林科技大学机械与电子工程学院,杨凌712100 [2]农业农村部农业物联网重点实验室,杨凌712100 [3]陕西省农业信息感知与智能服务重点实验室,杨凌712100

出  处:《农业工程学报》2023年第1期162-170,共9页Transactions of the Chinese Society of Agricultural Engineering

基  金:陕西省科技重大专项(2020ZDZX03-05-01);国家自然科学基金项目(31701664)。

摘  要:针对轻微霉心病和健康苹果光谱差异较小,致使基于可见/近红外特征光谱的检测方法对轻微霉心病检测准确率较低的问题。该研究将光谱形态特征与光谱特征融合的方法引入霉心病模型构建,建立了融合光谱形态特征的判别模型。以215个苹果可见/近红外光谱为样本,分析了不同预处理和特征提取组合对建模效果的影响,并完成了光谱特征的提取;分析健康果和霉心病苹果平均光谱的差异性,提取波峰、波谷等差异明显的光谱形态特征点,对比波段比、波段差和归一化强度差三类形态特征获取方法;最终建立光谱形态特征参数和光谱特征融合的苹果霉心病模型。试验结果表明,归一化预处理后提取的特征光谱和归一化强度差形态特征融合后模型判别准确率最高,在支持向量机模型中训练集、测试集判别准确率分别为98.6%和96.3%。特别是当发病程度小于10%时,该研究的判别模型准确率高于95%,表明通过融合光谱形态特征可以提升轻微病变霉心苹果的判别准确率。Moldy core is one of the most serious fungal diseases in apples.The visible/near infrared spectroscopy(VIS-NIR)technique has been a common-used approach to distinguish the apple moldy core.However,the better discriminant can be only confined to the severely diseased apples in the existing VIS-NIR,due to the smaller spectral difference between the mild mold core and healthy apples.It is a high demand to detect the mild mold core for early warning during apple production.In this study,an improved discriminant model was established to detect the apple moldy core using the spectral shape features,in order to significantly improve the detection accuracy.215 well-developed red Fuji apples without external damage were selected from the orchard in Fufeng County,Baoji City,Shaanxi Province,China,in November 2020.The VIS-NIR(350-1100nm)information was first collected from these apples.The images were then captured from the cutting apples.The degree of moldy-core was determined to calculate the ratio of the mold core area to the apple profile before image pretreatment.The discriminative accuracy was firstly compared with the savitzky-golay convolution smoothing(S-G)after normalization(NOR),Multiplicative scatter correction(MSC)after NOR,and standard normal variate transform(SNV)after NOR.Secondly,the feature bands were extracted from the images using the combination of competitive adaptive reweighted sampling(CARS),and Successive projections(SPA).Thirdly,five peaks and valleys(at the wavelength of 639,674,705,751,and 806 nm)were extracted from the average spectrum for the typical shape features.Band ratio(BR),band difference(BD),and normalized spectral intensity difference(NSID)were then analyzed to determine the spectral shape features(SSF)parameters with the highest discriminant accuracy.Finally,the optimal model was obtained between the partial least squares discriminant analysis(PLS-DA)and support vector machine(SVM).Results show that the NOR spectral pretreatment performed the best to extract the characteristic spectru

关 键 词:光谱 病害 苹果霉心病 光谱形态特征 归一化强度差 支持向量机 

分 类 号:O657.33[理学—分析化学] S436.611[理学—化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象