清开灵口服制剂“成分-靶标-功效”网络分析及实验验证研究  被引量:4

"Component-target-efficacy"network analysis and experimental verification of Qingkailing Oral Preparation

在线阅读下载全文

作  者:陈红英 姚鹏飞 韩彦琪[4] 徐旭[4] 许浚[4] 潘碧妍 欧阳冬生[1] 张铁军[4] CHEN Hong-ying;YAO Peng-fei;HAN Yan-qi;XU Xu;XU Jun;PAN Bi-yan;OUYANG Dong-sheng;ZHANG Tie-jun(Department of Clinical Pharmacology,Xiangya Hospital,Central South University,Changsha 410008,China;Guangzhou Baiyunshan Mingxing Pharmaceutical Co.,Ltd.,Guangzhou 510250,China;Tianjin University of Traditional Chinese Medicine,Tianjin 301617,China;Tianjin Key Laboratory of Quality Marker of Traditional Chinese Medicine,Tianjin Institute of Pharmaceutical Research,Tianjin 300301,China)

机构地区:[1]中南大学湘雅医院临床药理研究所,湖南长沙410008 [2]广州白云山明兴制药有限公司,广东广州510250 [3]天津中医药大学,天津301617 [4]天津药物研究院天津市中药质量标志物重点实验室,天津300301

出  处:《中国中药杂志》2023年第1期170-182,共13页China Journal of Chinese Materia Medica

基  金:国家重点研发计划项目(2019YFC1711300);湖南省创新创业技术投资项目(2019GK5020)。

摘  要:探索清开灵口服制剂清热解毒、镇静安神作用的“成分-靶标-功效”网络调控机制。通过选取清开灵口服制剂中23个主要成分为研究对象,利用TCMSP数据库和SwissTargetPrediction数据库预测化合物潜在作用靶点,运用UniProt数据库校准靶点基因,借助OmicsBean分析系统与STRING 10数据库对靶点进行基因本体(Gene Ontology,GO)功能富集分析和KEGG信号通路分析,利用Cytoscape 3.8.2软件进行可视化处理,构建“成分-靶标-通路-药理作用-功效”网络。对23个主要成分和15个关键靶点进行分子对接,验证其结合能力。最后采用脂多糖(lipopolysaccharide,LPS)诱导的RAW264.7细胞炎症模型,验证清开灵口服制剂中6个单体成分的抗炎作用。结果发现23个目标化合物可作用于236个相关靶点,干预33条关键信号通路,主要有花生四烯酸代谢、肿瘤坏死因子α(tumor necrosis factorα,TNF-α)信号通路、TRP通道的炎性介质调节、cAMP信号通路、cGMP-PKG信号通路、Th17细胞分化、白细胞介素17(interleukin-17,IL-17)信号通路、神经组织的配体-受体相互作用、钙信号通路、γ氨基丁酸能突触等,涉及抗炎及免疫调节、解热、抗惊厥等药理作用,构建了清开灵口服制剂“成分-靶点-通路-药理作用-功效”网络,分子对接结果表明活性成分与关键靶点的对接构象合理。体外细胞实验表明,清开灵口服制剂中6个单体成分(猪去氧胆酸、黄芩苷、绿原酸、异绿原酸C、表告依春、栀子苷)均能显著降低LPS诱导的RAW264.7炎性细胞上清中一氧化氮(nitric oxide,NO)、TNF-α和白细胞介素6(interleukin-6,IL-6)的表达(P<0.05),推测以上6个成分可能为清开灵口服制剂的关键药效物质。结果表明,清开灵口服制剂中主要化学成分猪去氧胆酸、黄芩苷、绿原酸、异绿原酸C、表告依春、栀子苷、胆酸、异绿原酸A、γ-氨基丁酸等可能通过作用于IL-6、TNF、前列腺素内过�This study aims to explore the mechanism of Qingkailing(QKL)Oral Preparation′s heat-clearing,detoxifying,mind-tranquilizing effects based on"component-target-efficacy"network.To be specific,the potential targets of the 23 major components in QKL Oral Preparation were predicted by the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP)and SwissTargetPrediction.The target genes were obtained based on UniProt.OmicsBean and STRING 10 were used for Gene Ontology(GO)term enrichment and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway enrichment of the targets.Cytoscape 3.8.2 was employed for visualization and construction of"component-target-pathway-pharmacological effect-efficacy"network,followed by molecular docking between the 23 main active components and 15 key targets.Finally,the lipopolysaccharide(LPS)-induced RAW264.7 cells were adopted to verify the anti-inflammatory effect of six monomer components in QKL Oral Preparation.It was found that the 23 compounds affected 33 key signaling pathways through 236 related targets,such as arachidonic acid metabolism,tumor necrosis factorα(TNF-α)signaling pathway,inflammatory mediator regulation of TRP channels,cAMP signaling pathway,cGMP-PKG signaling pathway,Th17 cell differentiation,interleukin-17(IL-17)signaling pathway,neuroactive ligand-receptor intera-ction,calcium signaling pathway,and GABAergic synapse.They were involved in the anti-inflammation,immune regulation,antipyretic effect,and anti-convulsion of the prescription.The"component-target-pathway-pharmacological effect-efficacy"network of QKL Oral Preparation was constructed.Molecular docking showed that the main active components had high binding affinity to the key targets.In vitro cell experiment indicated that the six components in the prescription(hyodeoxycholic acid,baicalin,chlorogenic acid,isochlorogenic acid C,epigoitrin,geniposide)can reduce the expression of nitric oxide(NO),TNF-α,and interleukin-6(IL-6)in cell supernatant(P<0.05).Thus,the above six compon

关 键 词:清开灵口服制剂 网络药理学 “成分-靶标-功效” 分子对接 药效物质 作用机制 

分 类 号:R286.0[医药卫生—中药学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象