基于卷积神经网络的绝缘子RTV喷涂缺陷检测方法  被引量:1

Insulator RTV Spraying Defect Detection Method Based on Convolutional Neural Network

在线阅读下载全文

作  者:杨昌建 吴兵 杨传凯 杨毅琛 刘典 杜建超[3] YANG Changjian;WU Bing;YANG Chuankai;YANG Yichen;LIU Dian;DU Jianchao(Electric Power Research Institute of State Grid Shaanxi Electric Power Co.,Ltd.,Xi’an,Shaanxi 710100,China;Marketing Service Center(Metrology Center)of State Grid Shaanxi Electric Power Co.,Ltd.,Xi’an,Shaanxi 710054,China;School of Telecommunications Engineering,Xidian University,Xi’an,Shaanxi 710071,China)

机构地区:[1]国网陕西省电力有限公司电力科学研究院,陕西西安710100 [2]国网陕西省电力有限公司营销服务中心(计量中心),陕西西安710054 [3]西安电子科技大学通信工程学院,陕西西安710071

出  处:《广东电力》2023年第3期114-121,共8页Guangdong Electric Power

基  金:国网陕西省电力有限公司科技研发项目(5226AK220001)。

摘  要:绝缘子室温硫化硅橡胶(room temperature vulcanized silicone rubber,RTV)涂层的二次喷涂可以有效延长绝缘子的使用寿命,保障电力系统的安全运行。针对喷涂质量的评估问题,提出一种基于卷积神经网络的RTV喷涂缺陷自动检测方法:首先构建绝缘子RTV喷涂区域提取网络模型,对绝缘子RTV喷涂区域进行精确分割;然后构建绝缘子RTV喷涂缺陷检测网络模型,对5种喷涂缺陷进行语义分割。实验结果证明,所构建的喷涂缺陷检测网络模型在评价指标上优于主流的语义分割网络,具有良好的性能,能够满足应用需求。The secondary spraying of room temperature vulcanized silicone rubber(RTV)coating on the insulators can effectively prolong the service life of insulators and ensure safe operation of the power system.Aiming at the evaluation of coating quality,an automatic detection method of RTV coating defects based on convolution neural network(CNN)is proposed.Firstly,the extraction network model of insulator RTV coating area is constructed to accurately segment the insulator RTV coating area.Then,the insulator RTV spray defect detection network model is constructed,and the semantic segmentation of five spray defects is carried out.The experimental results show that the constructed spray defect detection network model is superior to the mainstream semantic segmentation network in terms of evaluation indicators,has good performance and can meet the application requirements.

关 键 词:电力运检 绝缘子 RTV喷涂 卷积神经网络 缺陷检测 

分 类 号:TM216[一般工业技术—材料科学与工程] TP391.41[电气工程—电工理论与新技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象