检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:屈鸣鹤 吴少培 俞力洋 丁旺才[1] 李国芳[1] 黄然 QU Minghe;WU Shaopei;YU Liyang;DING Wangcai;LI Guofang;HUANG Ran(School of Mechanical Engineering,Lanzhou Jiaotong University,Lanzhou 730070,China)
出 处:《振动与冲击》2023年第5期66-73,121,共9页Journal of Vibration and Shock
基 金:国家自然科学基金(11962013;11732014);甘肃省青年科技基金资助项目(21JR7RA335)。
摘 要:针对具有非线性和黏弹性的隔振系统采用分数阶非线性Zener模型对其本构关系进行表征。将分数阶项等效成三角函数的形式,采用高阶谐波平衡法求解系统的稳态响应并结合多种方法对结果进行比较,数值模拟系统在低频区的动力学响应,采用Floquet理论对系统分岔类型进行判定,揭示了分数阶项对系统动力学响应的影响。研究结果表明,高次超谐波不仅存在跳跃现象且相邻次数超谐波转迁过程中存在周期运动多样性。数值模拟过程中还发现系统存在周期运动和混沌共存的现象,并总结了多态共存区域及其相邻区域的运动规律。Here, for vibration isolation system with nonlinearity and viscoelasticity, fractional order nonlinear Zener model was used to characterize the system’s constitutive relation. The fractional order term was equivalent to the form of trigonometric functions. The high-order harmonic balance method was used to solve steady-state response of the system and a variety of methods were used to compare their solving results. Dynamic responses of the system in low frequency domain were numerically simulated. Floquet theory was used to judge types of system bifurcations, and reveal effects of the fractional order term on dynamic responses of the system. The results showed that not only high order super-harmonic waves cause jump phenomena, but also in transition processes of adjacent order super-harmonic waves, the diversity of periodic motion exists;numerical simulation reveals periodic motion and chaos coexisting in the system, and motion laws of polymorphic coexistence regions and their adjacent regions being summarized.
关 键 词:非线性Zener模型 分数阶微分 超谐波共振 转迁规律
分 类 号:TH212[机械工程—机械制造及自动化] TH213.4
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7