检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:何涯舟 张珂[1,2,3,4] 晁丽君 程玉佳[1,3] HE Yazhou;ZHANG Ke;CHAO Lijun;CHENG Yujia(College of Hydrology and Water Resources,Hohai University,Nanjing 210098,China;Yangtze Institute for Conservation and Development,Hohai University,Nanjing 210098,China;CMA-HHU Joint Laboratory for Hydro-Meteorological Studies,Hohai University,Nanjing 210098,China;Key Laboratory of Water Big Data Technology of Ministry of Water Resources,Nanjing 210098,China)
机构地区:[1]河海大学水文水资源学院,江苏南京210098 [2]河海大学长江保护与绿色发展研究院,江苏南京210098 [3]中国气象局河海大学水文气象研究联合实验室,江苏南京210098 [4]水利部水利大数据重点实验室,江苏南京210098
出 处:《水资源保护》2023年第2期145-151,189,共8页Water Resources Protection
基 金:国家自然科学基金(51879067,52009028);中央高校基本科研业务费专项(B220203051,B220204014)。
摘 要:为提升径流模拟精度,以秦淮河流域为例,采用集合平均法将SMAP、SMOS、AMSR2卫星遥感土壤湿度融合并利用地形湿度指数进行空间降尺度处理,采用卡尔曼滤波算法和栅格新安江模型进行遥感融合土壤湿度同化。对2016—2018年秦淮河流域3个流量站记录的11场洪水进行模型数据同化的结果表明:日尺度率定期洪峰、径流深相对误差合格率均为71.43%,验证期洪峰、径流深相对误差合格率分别为66.67%和100%;经同化后,8场洪水径流深误差减小,平均误差降低29.01%;8场洪水确定性系数增大,范围在0.01~0.09之间,模拟精度最高可提升11.84%;同化多源遥感土壤湿度能有效改善土壤湿度估计的准确性,进而提升径流模拟精度。To improve the accuracy of runoff simulation,taking the Qinhuai River Basin as an example,data of remotely sensed soil moisture from the SMAP,SMOS and AMSR2 satellites is downscaled with the ensemble averaging method and merged with Kalman filter algorithm based on Grid-Xin’anjiang model.The results of data assimilation on 11 flood events recorded by 3 flow stations in the Qinhuaihe Watershed from 2016 to 2018 showed that,the qualified ratios of the relative errors of flood peak and runoff depth in the daily simulations are 71.43%in calibration period,while the two qualified ratios are 66.67%and 100%in validation period,respectively.After data assimilation,the runoff depth relative errors for the eight flood events are reduced by 29.01%in average.The deterministic coefficients of the eight flood events,ranging between 0.01 and 0.09,are improved with a maximum improvement of 11.84%.Data assimilation on remotely sensed soil moisture can effectively improve the accuracy of soil moisture and runoff simulations.
关 键 词:径流模拟 多源遥感土壤湿度 栅格新安江模型 数据同化 卡尔曼滤波算法 秦淮河流域
分 类 号:P933[天文地球—自然地理学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:52.14.244.195