检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:黄俊 刘孟奇 程泽凯 洪旭东 HUANG Jun;LIU Mengqi;CHENG Zekai;HONG Xudong(School of Computer Science and Technology,Anhui University of Technology,Maanshan,Anhui 243032,China;Institute of Artificial Intelligence,Hefei Comprehensive National Science Center,Hefei 230088,China)
机构地区:[1]安徽工业大学计算机科学与技术学院,安徽马鞍山243032 [2]合肥综合性国家科学中心人工智能研究院,合肥230088
出 处:《中国科技论文》2023年第3期245-251,274,共8页China Sciencepaper
基 金:国家自然科学基金资助项目(61806005);安徽高校协同创新项目(GXXT-2020-012,GXXT-2022-052);安徽高校科学研究重点项目(KJ2021A0373,KJ2019A0064)。
摘 要:提出一种基于属性相关性的零样本学习(zero-shot learning,ZSL)方法。为了充分利用语义属性信息的内在关系,分别设计了基于均方误差(mean square error,MSE)的排名损失项和属性相关性损失项。排名损失项要求模型预测的视觉属性向量在所有类别属性向量中最靠近其真实类别,以学习到具有区分性的属性表示;属性相关性损失项使模型避免在可见类别样本上过拟合以提高模型在ZSL和广义零样本学习(generalized zero-shot learning,GZSL)任务上的泛化性能。在4个零样本学习基准数据集上进行了实验,验证了所提方法的有效性。A zero-shot learning(ZSL)method based on attribute correlation was proposed.In order to make full use of the intrinsic relationship of semantic attribute information,a ranking loss term based on mean square error(MSE)and an attribute relevance loss term were designed,respectively.The ranking loss term required that the visual attribute vector predicted by the model was closest to its true category among all category attribute vectors in order to learn a discriminative attribute representation.The attribute relevance loss term prevented the model from overfitting on the seen class samples and improved the generalization performance of the model on ZSL and generalized zero-shot learning(GZSL)tasks.Experiments were conducted on four zero-sample learning benchmark datasets and the effectiveness of the proposed approach was verified.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15