UNCONDITIONALLY OPTIMAL ERROR ANALYSIS OF THE SECOND-ORDER BDF FINITE ELEMENT METHOD FOR THE KURAMOTO-TSUZUKI EQUATION  

在线阅读下载全文

作  者:Yuan Li Xuewei Cui 

机构地区:[1]College of Mathematics and Physics,Wenzhou University,Wenzhou 325035,China

出  处:《Journal of Computational Mathematics》2023年第2期211-223,共13页计算数学(英文)

基  金:supported by the Natural Science Foundation of Zhejiang Province with Grant No.LY18A010021.

摘  要:This paper aims to study a second-order semi-implicit BDF finite element scheme for the Kuramoto-Tsuzuki equations in two dimensional and three dimensional spaces.The proposed scheme is stable and the nonlinear term is linearized by the extrapolation technique.Moreover,we prove that the error estimate in L^(2)-norm is unconditionally optimal which means that there has not any restriction on the time step and the mesh size.Finally,numerical results are displayed to illustrate our theoretical analysis.

关 键 词:Kuramoto-Tsuzuki equations BDF scheme Finite element method Optimal error analysi 

分 类 号:O241.82[理学—计算数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象