检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:邵云飞 宋友[1] 王宝会[1] SHAO Yunfei;SONG You;WANG Baohui(School of Software,Beihang University,Beijing 100191,China)
出 处:《计算机科学》2023年第4期16-21,共6页Computer Science
摘 要:图是一种重要且基础的数据结构,存在于各种各样的实际场景中。而随着近年来互联网的高速发展,社交网络图数据大量增加,对这些数据进行分析对公共服务、广告营销等实际场景有重要作用。目前已经有不少的图神经网络算法在此类问题中取得了较好的结果,但依然有提升的空间,在很多追求高准确度的场景下,工程师依然希望有性能更好的算法可供选择。文中对神经网个性化传播算法进行了改进,提出了新的可用于社交图网络的图神经网络算法DPPNP。相比于传统图神经网络算法,在信息于节点之间传播时,该算法会根据节点的度对不同节点按不同比例保留自身信息,以提高准确度。在真实数据集上的实验结果表明,与已有的图神经网络算法相比,该算法拥有更好的性能。Graph is an important and fundamental data structure that presents in a wide variety of practical scenarios.With the rapid development of the Internet in recent years,there has been a huge increase in social network graph data,and the analysis of this data can be of great help in practical scenarios such as public services and advertising and marketing.There are already quite a few graph neural network algorithms that can get good results in such problems,but they still have room for improvement,and in many scenarios where high accuracy is pursued,engineers still want to have algorithms with better performance to choose from.This paper improves personalized propagation of neural predictions and proposes a new graph neural network algorithm called degree of node based personalized propagation of neural predictions(DPPNP)that can be used in social graph networks.Compared to traditional graph neural network algorithms,when the information is propagated between nodes,the proposed algorithm will keep its own information for different nodes in different proportions according to the degree of nodes,so as to improve the accuracy.Experiments on real datasets show that the proposed algorithm has better performance compared to previous graph neural network algorithms.
关 键 词:图结构数据 图神经网络 图卷积神经网络 节点分类
分 类 号:TP301[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7