检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈峰 余轶 徐敬友 杨洁 陈可 张天东 郭露方 郑子健 胡钋[3] CHEN Feng;YU Yi;XU Jingyou;YANG Jie;CHEN Ke;ZHANG Tiandong;GUO Lufang;ZHENG Zijian;HU Po(State Grid Hubei Electric Power Company Limited Economic Research Institute,Wuhan 430077,China;State Grid Shijiazhuang Power Supply Company,Shijiazhuang 050000,China;School of Electrical Engineering and Automation,Wuhan University,Wuhan 430072,China)
机构地区:[1]国网湖北省电力有限公司经济技术研究院,湖北武汉430077 [2]国网石家庄供电公司,河北石家庄050000 [3]武汉大学电气与自动化学院,湖北武汉430072
出 处:《电力系统保护与控制》2023年第6期170-178,共9页Power System Protection and Control
基 金:国家自然科学基金面上项目资助(51977160);国网湖北省电力公司科技项目资助(SGHBJYOOPSJS2200130)。
摘 要:为提高风电出力的预测精度,提出一种基于Bayes优化的长短期记忆人工神经网络(long-short term memory,LSTM)的预测模型。首先,利用经验模态分解对风电历史出力序列进行分解,并对各分量及原始数据分别提取8个统计特征量,与预测前6个时刻出力值共同组成预测特征集。然后,采用绳索算法(least absolute shrinkage and selection operator,LASSO)从预测特征集中提取具有统计意义的特征子集,作为预测模型的输入。最后,提出基于Bayes超参数寻优的LSTM网络优化方法,以提高预测精度。选取湖北某市风电出力历史数据进行预测实验,结果表明:相较于BP神经网络、SVM、RBF网络、GRNN网络等预测模型,所提模型预测精度较高,特征提取方法较为合理。To improve the prediction accuracy of wind power output,a model using a long-and short-term memory(LSTM)artificial neural network based on Bayesian optimization is proposed.First,empirical mode decomposition is used to decompose an historical output series of wind power,and eight statistical features are extracted from each component and the original data respectively.In this way a prediction feature set is formed together with the output values at the first six moments of prediction.Then,a least absolute shrinkage and selection operator(LASSO)algorithm is used to extract the feature subset with statistical significance from the prediction feature set as the input to the prediction model.Finally,an optimization method of an LSTM network based on Bayesian super-parameters optimization is proposed to improve prediction accuracy.The historical data of wind power output in a city in Hubei Province are selected for a prediction experiment.The results show that,compared with a BP neural network,support vector machine(SVM),radial basis function(RBF)network,general regression neural networks(GRNN)network and other prediction models,the proposed model has higher accuracy and the feature extraction method is more reasonable.
关 键 词:风电出力预测 深度学习 Bayes优化 特征提取
分 类 号:TM614[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.90