基于CPCRLB和动态成簇机制的混合WSN目标跟踪算法  

A Hybrid WSN Target Tracking Algorithm Based on CPCRLB and Dynamic Clustering Mechanism

在线阅读下载全文

作  者:高华金 江潇潇[1] 金婕[1] 王永琦[1] GAO Huajin;JIANG Xiaoxiao;JIN Jie;WANG Yongqi(Shanghai University of Engineering Science,School of Electronic and Electrical Engineering,Shanghai 201600,China)

机构地区:[1]上海工程技术大学电子电气工程学院,上海201600

出  处:《火力与指挥控制》2023年第2期90-96,共7页Fire Control & Command Control

基  金:国家自然科学基金资助项目(61701295)。

摘  要:针对传统的基于静态节点的无线传感器网络(wireless sensor network,WSN)电池容量有限、节点移动受限的问题,提出了一种基于条件后验克拉美-罗下界(conditional posterior cramer-rao lower bounds,CPCRLB)的混合WSN的目标跟踪调度算法。该算法引入移动节点来参与目标跟踪,根据目标预测位置对移动节点进行运动控制,同时利用基于CPCRLB的信息效用函数选择静态节点,实现每一时刻目标的动态成簇策略。此外,还提出了一种基于运动学的预测机制,利用分区域管理的方法进一步提高跟踪精度,减少能量消耗,并能够有效避免目标丢失现象。仿真结果表明,该算法可以有效地对目标进行跟踪,在保证跟踪精度的同时相比静态网络节省了大量的能耗。Aiming at the problem of limited battery capacity and limited node mobility in traditional wireless sensor network(WSN)based on static nodes,this paper proposes a hybrid WSN target tracking and scheduling algorithm based on the conditional posterior Cramer-Raw lower bounds(CPCRLB).This algorithm introduces mobile nodes to participate in target tracking,and performs motion control on the mobile nodes according to the predicted position of the target,at the same time,use the information utility function based on CPCRLB to select static nodes to achieve the dynamic clustering strategy of the goal at each moment.In addition,a prediction mechanism based on kinematics is proposed on this basis,use the method of sub-regional management to further improve tracking accuracy,reduce energy consumption,and effectively avoid target loss.The simulation results show that the algorithm can effectively track the target and savea lot of energy consumption compared with static networks while ensuring the tracking accuracy.

关 键 词:目标跟踪 CPCRLB 混合WSN 动态成簇 

分 类 号:TP274.2[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象