检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:舒坚[1] 史佳伟 刘琳岚[2] Manar Al-Kali SHU Jian;SHI Jiawei;LIU Linlan;Manar Al-Kali(School of Software,Nanchang Hangkong University,Nanchang 330063,China;School of Information Engineering,Nanchang Hangkong University,Nanchang 330063,China)
机构地区:[1]南昌航空大学软件学院,江西南昌330063 [2]南昌航空大学信息工程学院,江西南昌330063
出 处:《通信学报》2023年第3期145-156,共12页Journal on Communications
基 金:国家自然科学基金资助项目(No.62062050,No.61962037);江西省研究生创新专项资金资助项目(No.YC2021-S708)。
摘 要:机会网络拓扑的高动态性导致其拓扑预测极具挑战。现有拓扑预测方法主要关注网络长期时空依赖,忽视了短期时空特征。综合考虑机会网络长短期时空依赖关系,提出一种基于动态时间规整算法与时空卷积的机会网络拓扑预测方法(DTW-STC)。基于动态时间规整算法确定切片时长,将机会网络切分为快照,用快照的链路状态矩阵表征其拓扑信息;采用时序卷积神经网络获取短期时序特征,结合网络变化构建时空图表征短期时空关系,利用图卷积运算提取网络的短期时空特征,经过多次卷积的堆叠,得到网络长短期时空特征;基于自编码器结构实现向量空间切换,预测下一时刻网络拓扑。3个真实机会网络数据集ITC、MIT以及Asturias-er上的实验结果表明,DTW-STC方法的预测性能优于基线方法。The high dynamics of opportunistic network topology leads to the challenges of topology prediction.The existing research mainly focuses on the long-term spatiotemporal dependence of networks,ignoring the short-term spatiotemporal features.A topology prediction method for opportunistic network based on dynamic time warping algorithm and spatiotemporal convolution(DTW-STC)was proposed,which integrated long-short term spatiotemporal dependence in opportunistic network.The time slot was determined based on dynamic time warping algorithm,so that the opportunistic network was sliced into snapshots which topology was presented by link state matrix.Temporal convolution was employed to extract short-term temporal features.The spatiotemporal graph,representing the short-term spatiotemporal relationship,was constructed by temporal features and network changes.The short-term spatiotemporal features were captured by graph convolution.After stacks of spatiotemporal convolution,the long-short term spatiotemporal features of network were achieved.Based on the autoencoder structure,vector space transformation was realized,so that the future network topology was predicted.The results on three real opportunistic network datasets,ITC,MIT,and Asturias-er,show that the proposed DTW-STC has better prediction performance than ones of other baseline methods.
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222