检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王冠中[1] 王奕鑫 但扬清 何英静 吴浩[1] WANG Guan-zhong;WANG Yi-xin;DAN Yang-qing;HE Ying-jing;WU Hao(College of Electrical Engineering,Zhejiang University,Hangzhou 310027,China;Economic Research Institute of State Grid Zhejiang Electric Power Company,Hangzhou 310008,China)
机构地区:[1]浙江大学电气工程学院,浙江杭州310027 [2]国网浙江省电力公司经济技术研究院,浙江杭州310008
出 处:《浙江大学学报(工学版)》2023年第3期616-624,共9页Journal of Zhejiang University:Engineering Science
基 金:国网浙江电力科技资助项目(2021ZK10).
摘 要:从矩阵消元的视角系统阐述在交直流系统电压稳定分析中雅克比矩阵的推导方法.利用交流侧雅克比矩阵主导模态灵敏度的符号分布性质,定性分析直流不同控制方式对系统电压稳定裕度的影响规律.将多种LCC-HVDC控制方式下的雅克比矩阵推导过程统一表示为对四阶雅克比矩阵的矩阵消元过程,从矩阵分析的角度统一LCC-HVDC电压稳定建模过程.将交流戴维南等值电路雅克比矩阵主导模态的灵敏度具有符号分布性质的证明补充完整,据此定性分析不同控制方式的直流系统接入受端交流网络后系统稳定裕度的变化趋势.通过Cigre标准系统算例验证所提方法的有效性.The derivation method of the Jacobian matrix in voltage stability analysis of AC/DC power systems was systematically elucidated from the perspective of matrix elimination.The sign distribution property of the dominant modal sensitivity of the AC-side Jacobian matrix was utilized to qualitatively analyze the impact of different control modes of LCC-HVDC on the system voltage stability margin.Firstly,the Jacobian matrix derivation process under multiple LCC-HVDC control modes was uniformly expressed as the matrix elimination process of the fourth-order Jacobian matrix.Secondly,the complete proof of the sign distribution property of the dominant modal sensitivity of the Jacobian matrix in the AC Thevenin equivalent circuit was supplemented,based on which the change trend of the system stability margin at the receiving end AC system with different control modes was qualitatively analyzed.Finally,the effectiveness of the proposed method was verified by a Cigre standard system model.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.62