Framework for a Computer-Aided Treatment Prediction (CATP) System for Breast Cancer  

在线阅读下载全文

作  者:Emad Abd Al Rahman Nur Intan Raihana Ruhaiyem Majed Bouchahma Kamarul Imran Musa 

机构地区:[1]School of Computer Sciences,Universiti Sains Malaysia,Penang,11800,Malaysia [2]School of Computer Science,Higher Colleges of Technology,RAK,UAE [3]Department of Community Medicine,School of Medical Sciences,Universiti Sains Malaysia,Kubang Kerian,Kelantan,16150,Malaysia

出  处:《Intelligent Automation & Soft Computing》2023年第6期3007-3028,共22页智能自动化与软计算(英文)

基  金:N.I.R.R.and K.I.M.have received a grant from the Malaysian Ministry of Higher Education.Grant number:203/PKOMP/6712025,http://portal.mygrants.gov.my/main.php.

摘  要:This study offers a framework for a breast cancer computer-aided treat-ment prediction(CATP)system.The rising death rate among women due to breast cancer is a worldwide health concern that can only be addressed by early diagno-sis and frequent screening.Mammography has been the most utilized breast ima-ging technique to date.Radiologists have begun to use computer-aided detection and diagnosis(CAD)systems to improve the accuracy of breast cancer diagnosis by minimizing human errors.Despite the progress of artificial intelligence(AI)in the medical field,this study indicates that systems that can anticipate a treatment plan once a patient has been diagnosed with cancer are few and not widely used.Having such a system will assist clinicians in determining the optimal treatment plan and avoid exposing a patient to unnecessary hazardous treatment that wastes a significant amount of money.To develop the prediction model,data from 336,525 patients from the SEER dataset were split into training(80%),and testing(20%)sets.Decision Trees,Random Forest,XGBoost,and CatBoost are utilized with feature importance to build the treatment prediction model.The best overall Area Under the Curve(AUC)achieved was 0.91 using Random Forest on the SEER dataset.

关 键 词:BREASTCANCER MACHINELEARNING featureimportance FEATURESELECTION treatment prediction SEER dataset computer-aided treatment prediction(CATP) clinical decision support system 

分 类 号:R737.9[医药卫生—肿瘤] TP181[医药卫生—临床医学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象